Fourth International Conference on Natural Computation

MERGE: A Novel Evolutionary Algorithm based on
Multi Expression Gene Programming

Shucheng Dai', Changjie Tang!, Mingfang Zhu'?,Yu Chen’,
Peng Chen', Shaojie Qiao',Chuan Li!
LSchool of Computer Science, Sichuan University, Chengdu, China
2Dept. of Computer Sci. and Technol, Shaanxi Univ. of Technol Hanzhong, China
{daishucheng,tangchangjie,zhumingfang} @cs.scu.edu.cn

Abstract

Gene Expression Programming (GEP) is a new member
in genetic computing. The traditional GEP lacks the power
to handle very complex function mining problems due to its
limited express capability. To solve the problem, this pa-
per presents a new evolutionary algorithm named Multi Ex-
pRession GEne programming (MERGE). The main contri-
butions include: (a) Provides a novel hierarchical gene en-
coding and decoding model; (b) Proposes a chromosome
architecture that allows of a genome with multiple candi-
date expressions; (c) Implements MERGE algorithm and
gene fitness evaluation algorithm. (d) Gives extensive ex-
periments to show that MERGE outperforms the traditional
GEP. Furthermore, When mining complex functions, the
success rate of MERGE is 3-5 times of GEP, the average
number of generation of successful evolution is 87% higher
than GEP , and the average minimum generation of suc-
cessful evolution of MERGE is reduced to 0.4% of GEP.

1. Introduction

Gene Expression Programming (GEP) was proposed by
Ferreira C. in 2000[3], which is derived from Genetic Algo-
rithm(GA) [4, 9] and Genetic Programming(GP)[7]. GEP
is widely applied in data mining area such as function find-
ing, classification, association rule, time series prediction,
parameter optimization, and digital circuit design etc. In
GEP, Genotype (Chromosome) and Phenotype (Expression
Tree (ET)) are separated from each orther. Without prior
knowledge, GEP automatically evolves over training data
and discovers knowledge such as mathematical formulae.

This work was supported by the National Science Foundation of China
under Grant No. 60773169 and the 11th Five Years Key Programs for Sci.
&Tech. Development of China under grant No. 2006BAIOSAO01.

978-0-7695-3304-9/08 $25.00 © 2008 IEEE
DOI 10.1109/ICNC.2008.164

320

Function finding is a typical application of GEP. Tradi-
tional GEP always treats multiple genes in a chromosome
as one entity. When mining complex functions, multiple
genes encode a single expression formula by link functions
such as plus, minus, etc.

GEP lacks the power for mining complex functions due
to following limitations: (a) independence of gene expres-
sion restricts express capability of chromosome and slows
down the convergence speed, and (b) one chromosome en-
codes just one function expression. They restrict search
space of GEP, and result in oversized evolution generations.

MEP(Multi Expression Programming) is proposed re-
cently [10, 11]. However, (a)Little redundancy exists in
MEP genes, and the population diversity is low, (b)Gene fit-
ness calculation and decoding process are time-consuming
for complex function finding, and (c)Evolutions may fall in
trap of Local Optimal Solution(LOS).

This study proposes a novel genetic algorithm based on
Multi ExpRession GEne programming(MERGE). The con-
tributions include: (a) Each gene is evaluated against its se-
lection environment independently, and a chromosome en-
codes multiple solutions to problems because each gene en-
codes a solution. (b) Fitness of a chromosome is the best fit-
ness among those of all genes it contains. (c¢) Propose a new
model for hierarchical gene encoding and decoding. After
genetic operations, one gene appears zero or more times in
its posterior genes. (d) Implement MERGE algorithm in-
cluding genetic operations, encoding and decoding of genes
and fitness evaluation of chromosome and gene. (e) Give
extensive experimental results and compare MERGE with
traditional uni-genic GEP and multi-genic GEP. The exper-
imental simulation shows that MERGE is an effective and
efficient evolutionary algorithm.

The paper is organized as follows. Section 2 describes
related works. Section 3 gives several definitions and imple-
mentation of MERGE algorithm. Section 4 presents fitness
evaluation algorithms. Section 5 gives experimental results

IEEE
computer
® psouety

and performance analysis. Section 6 concludes the paper.

2. Related work

Function mining is an important task in knowledge dis-
covery. In literature[1, 2], GEP was introduced to function
discoveries and performed quite well in many practical situ-
ations. Li et al. proposed P-GEP which is a GEP variant[8].
They adopted a new scheme based on prefix notation to con-
struct a hierarchy composition of the solution to complex
function finding problems with better performance than tra-
ditional GEP. Huang et al.[5, 6] proposed MEM based on
GEP to mine complex functions with multiple domains.
Ferreira proposed a Boolean function discovering method
based on GEP[2]. Peng et al. presented M-GEP which con-
structs a multi-layer chromosome beyond GEP [12, 13]. Wu
et al. solved the problem of recursive function discoveries
using GEP[14].

In the above methods, one chromosome is translated
into just one expression tree(ET) which can only express
an algebraic function or formula. Although each gene en-
codes an ET and multi-genes chromosome encodes mul-
tiple ETs, these ETs have to be linked by a predeter-
mined linking function to obtain one unique expression.
Oltean et al. proposed Multi Expression Programming
(MEP)[10, 11] where one chromosome encodes multiple
expressions. MEP is inspired by computer programming
language like C or Pascal, and solved multiple expressions
problem with regard to chromosome. Meanwhile, it intro-
duced another problem that a gene in chromosome is always
atriple or a terminal symbol, which contains little redundant
information that is critical for successful evolutions

3. Definition and MERGE Algorithm

The algorithm MERGE proposed in this paper is based
on multi expression gene programming where each chro-
mosome encode multiple candidate mathematical expres-
sions. Moreover, MERGE adopts a different individual fit-
ness evaluation model, encoding and decoding model and
genetic operators.

The following example motivates the new model.

Example 1. Let C2 be a 2-genes chromosome in MERGE,
function set F be {+,-,*,/} and terminal set 7 be {a, b}, head
length be 5 and tail length be 6 by Equation (1)). Then the
two sub-ETs and their corresponding mathematical func-
tions are given in Fig. 1.

Fig. 1(a) describes a chromosome with two genes which
locate at position 0 and 1 respectively (note that the position
information is not a part of the genotype). Fig. 1(b) gives
two ETs encoded in gene O and 1, and their mathematical

321

[0: *o+a*aababa T- fa,bj P-¢ S0 | Gene O

chromosome
‘l:—Oa—Oababab T= {ab} P={0} S=1 \

(a)

This leaf node is a pointer
toward gene 0

ET of gene 0

ﬂ(w ET of gene 1

b*(a+a’) b*(a+a’)+a

()

Figure 1. Individual representation in MERGE:
2-genes chromosome, two expression trees
and corresponding mathematical formulae

function expressions are shown in Fig. 1 (c). Note that the
genotype of gene 1 is '+la+lababab’, and its phenotype,
the right ET in Fig. 1(b), is an ET with one pointer toward
the ET of gene 0. Therefore, you can obtain the complete
ET of gene 1 if you replace gene pointer leaf node 0 with
the ET of gene 0. We just use a pointer here to simplify this
complexity.

Definition 1 (Gene). A gene G is a 6-tuple (Q, F, T, S, Fit-
ness, P), Where:

o () is genotype,
e Fis function set,
o T'is basic terminal set,

e S is gene position where the gene is located in its chro-
mosome,

e Fitness is the score of gene according to designated
fitness evaluation function,

e P is gene pointer terminal set {i| i € [0, S — 1] and i€
N }, where a pointer, e.g. i points to the gene located
ati.

Definition 1 gives each gene a unique position S. If a
gene is located at i, it is called i-th gene or gene i. Fig. 1(a)
shows two genes i.e. gene 0 and 1 which locate at position
0 and 1 respectively.

There are two terminal sets, i.e. the basic terminal set 7'
and the gene pointer terminal set P. P is very important for
hierarchical gene representation in MERGE, whereas GEP
gene has only basic terminal set 7.

The gene in MERGE also contains two parts: head and
tail, and the length of the gene satisfis Equation (1). The
head consists of symbols from head set (HS, HS=FUTU P),
and the tail consists of symbols from tail set (7S, TS=TU

P). After the structure of chromosome is set, P of each
gene is determined. Obviously, S and P of one gene are
different from those of other genes in a specific chromo-
some. By Definition 1, P of gene 0 is () and P of gene
1 is {0}, which is illustrated in Fig. 1(a). For example,
”+0a+0ababab 7= {a, b} P= {0} S=1" represents a gene
where Q is ”+0a+0ababab” which is located at position 1.

t=hn—1)+1 (1)

where is the length of tail, £ is the head length and # is
the max arity of all functions in function set F.

Definition 2 (Chromosome). A chromosome C is a 3-tuple
(U, K, CFitness), where:

o U is the set of all genes in the chromosome.
o K is the number of genes the chromosome contains;

o CFitness is the fitness of this chromosome, which is
the best fitness of all its genes and can be calculated
through the following Equation (2):

CFitness = Maz{Fitness; | Fitness; is the

fitness of gene j,where0 < j < K — 1.} 2)

The length of a chromosome can be obtained by Equa-
tion (3):

LC = K[hn+1] 3)

A chromosome in MERGE encodes multiple mathemat-
ical formulae and all of them are candidate solutions to a
problem, which are shown in Fig. 1(c). This is greatly dif-
ferent from that in the traditional GEP, where a chromosome
can have just one formula in spite of the number of genes it
contains.

Definition 3 (Allele). Let GI, G2 be two genes from two
different chromosomes in the same population, the position
S in Definition 1 of Gi be S¢, If S¢1 = Sg2, then G1, G2
are Alleles. If Sa1 < Sga, then G1 is lower position gene
of G2 or G2 is higher position gene of G1.

Lemma 1. Let G1, G2 be two genes from two different chro-
mosomes in the same population. Let T'Sq1, T'Sco be their
union of basic terminal set T and gene pointer set P respec-
tively. Then G1, G2 are alleles, if and only if T'Sg1=T Sg2

Proof. Let T'Sg1, T'Sgeo are tail sets of G1 and G2 respec-
tively.If G1, G2 are alleles, they locate at the same posi-
tion in its chromosomes respectively, i.e. Sg1 = Sgo.
Thus, they have the same P with each other by Definition 1.
Moreover, they share the same 7" because they belong to
two chromosomes in the same population. So they have the
same union set of T and P, i.e. T'Sg1 = T'Sge. On the
other hand, if T'Sg1 = T'Sg2, then G1 and G2 have same
P because their T's are same. Since G1 and G2 come from
two genomes in the same population, the same P means the
same S by Definition 1, thus, they are alleles. O

322

The following Example 2 illustrates the stronger express
capability of MERGE gene.

Example 2. Let the target function be a?", the function set
be {+, -, *, /}. To evolve the target function, GEP chromo-
some requires at least 2”1 — 1 symbols i.e. 2" terminal
symbols ’a’ and 2™ — 1 function symbols **’. However,
MERGE only requires 3n symbols. For example, chromo-
somes from GEP and MERGE that encode a® are given be-
low:

GEP: C=*******gqa3aaaa
MERGE: 0:*a, a
1:*#0,0
2:%1, 1

The most important thing is that a GEP chromosome ex-
presses just one function a®, whereas, a MERGE chromo-
some can express multiple formulae i.e. a®, a*, and a2
Therefore, for the same chromosome length, the express
capability of MERGE chromosome greatly exceeds that of
GEP and MERGE has much stronger search ability.

The key ideas of MERGE algorithm are: (a) encoding
more powerful genes through lower position genes, (b) each
gene is evaluated respectively and participates in selection
operation, and (c) the best gene is chosen to represent its
chromosome. The evolution process is illustrated in Algo-
rithm 1.

Algorithm 1 MERGE Evolution Process
1: INPUT: configuration and training data

: OUTPUT: one individual with best fitness

: load training data and initial configuration

: randomly create an initial population

for i = 0 to Max_Generation do
decode each chromosome into multiple ETs
calculate each chromosome’s fitness which can be
obtained through calculating its genes’ fitness.
select individuals and generate next generation
apply genetic operations sequentially on the new
generation
randomly extract & symbols from HS to generate
gene head
randomly extract ¢t symbols from T'S to generate
gene tail, where t is calculated by Equation (1)

end for

return an individual with best fitness

o ®

12:
13:

The algorithm-MERGE is similar to the algorithms of
GA[4, 9], GP[7], and GEP[3] in evolution process; it re-
peats the process of selection—genetic operation—fitness
evaluation—new population until the stop condition is sat-
isfied. MERGE adopts a different policy to evaluate the fit-
ness of an individual. In MERGE, each chromosome con-
tains multiple genes where each gene can be decoded into

an independent ET. Thus we first calculate the fitness of
each gene in the chromosome, and then set the individual’s
fitness as the maximum of its genes’ fitness. By this way,
the best gene encoding the best solution to a problem can be
find out and kept during evolution.

4. Fitness Evaluation of Individual

MERGE calculates all genes’ fitness of each chromo-
some in population, and then sets the individual’s fitness
as the max fitness of its genes. In MERGE, we use relative
error evaluation Equation (4)[2] to evaluate the fitness of a
gene.

T
Fo(E) =" (R— ‘# : 100‘) @
j=1

J

In Equation (4), R is selection range, P;; is the model
value of i-th gene in the chromosome over the j-th train-
ing data, T} is the target value of the j-th training data, and
F.(E;) is the fitness value of the i-th gene, and 7 is the
number of training data.

After calculating each gene’s fitness, we set the fitness
of the chromosome as the maximum of these genes’ fitness.
Equation (5) is used to calculate an individual fitness.

F(C)=Maz{F.(E;)},0<i< K -1 5)
C' is chromosome representing an individual, and F'(C)
is the fitness of the chromosome over all training data, and
K is the number of genes.
The Algorithm 2 is used to calculate individual’s fitness
and its genes’ fitness.

Algorithm 2 MERGE _GIFitness
1: INPUT: Training Set and Individual C
2: OUTPUT: Individual’s Fitness
3: load training data and initialize two arrays: modelV and
fitnessofChromo.
decode individual C into multipule ETs
for all gene Gin C do
for all data D in training data do
calculate the model value of G over D
store the model value into array modelV
end for
calculate gene G’s fitness by Equation (4) and store
it to array fitnessofChromo
end for
return the maximum fitness from fitnessofChromo

R e A A

11:
12:

323

5. Experiment and Performance Analysis

MERGE is implemented based on Java SDK 1.5, Eclipse
3.2 and Windows XP.

Experiment 1. Problem of function finding. The func-
tion is as follows:

fla) =a® —2xa* + a? (6)

Randomly generate 20 sample data according to Equa-
tion (6) in the range of [0, 3]. Parameters are listed in Ta-
ble 1. Run each algorithm 100 times.

Table 1. Parameter settings*

Parameters values
Function Set +,-,%/
Basic Terminal Set {a}
Number of Generations 5000
Population Size 100
Selection Range 1000
Head Length 7
Number of Genes 4
Length of Chromosome 60
IR,IS,RIS 0.1
Length of Insertion Sequence {1,2,3}
One-point Recombination Rate 0.3
Two-point Recombination Rate 0.3
Gene Recombination Rate 0.1
Precision 0.01

The experimental results are given in Table 2.
Table 2. Performance comparison*

Suc Avg Max Min
MERGE 100% 387 1008 3
Single-Gene GEP 84% 1290 4812 24
Multi-Genes GEP 22% 2909 4840 743

*”Suc” means the success rate. ”"Avg” means the average number of
generation of success evolution. "Max” means the max number of gener-
ation of success evolution and "Min” is the min number of generation of
success evolution.

Table 2 shows that MERGE outperforms singe-gene
GEP and multi-genes GEP on function mining and its suc-
cess rate is 100% which is 19% and 355% higher than
single-gene GEP and multi-genes GEP respectively. The
average number of generation of success evolutions is 70%
and 87% higher than singe-gene GEP and multi-genes GEP
respectively, and the minimum number of generation of suc-
cess evolutions is as much 12.5% and 0.4% as singe-gene
GEP and multi-genes GEP.

Experiment 2. Test the influence of head length on suc-
cess rate.

The training data are generated in the range [0, 20] by
target function f(z) = a*+a®+a®+a. Run the experiment
100 times, and the results are shown in Fig. 2.

The evolution parameters are partially listed in Table 3,
and other parameters were same to those in Table 1.

Table 3. Parameter settings

Parameters values
Number of Generations 50
Population Size 30
Selection Range 100
Number of Genes 6

100
0 /"
80

70

——MERE

—8—multi-genes GEP

—— single-gene P

£ 60
HEY
]
f40
30
20

10 Head Length

123456 7 8 91011121314 1516 17 18 19 20

Figure 2. Variation of success rate with head
length in MERGE, single-gene GEP and multi-
genes GEP

The experiment shows:

(a) MERGE required less head length when the param-
eters setting and target function were same. Furthermore,
MERGE reached the success rate of 83% even though the
head length was 1 or 2. However, GEP will fail.

(b) MERGE can easily arrive at the success rate of 100%
when head length was 3 and it never went down after that.
Although multi-genes GEP could achieve at the maximum
success rate of 83% when head length was 4, it would go
down when the head length was longer.

(c) Single-gene GEP never succeeded in evolution when
head length was less than 5, but when the head length was
longer; the success rate also went up steadily.

6. Conclusions

We propose a novel genetic evolutionary algorithm -
MERGE featured with multi expression chromosome. The
main contributions include: (a)Presents a novel hierarchical
gene representation model including encoding and decod-
ing model.(b)Puts forward a novel chromosome encoding
scheme that allows of a genome with multiple candidate
expressions.(c)Implements algorithms including MERGE,
gene encoding, gene decoding, and gene fitness evaluation
algorithms.(d)Gives extensive experimental results to show
that MERGE outperforms single-gene GEP and multi-genes
GEP.

324

References

(1]

(2]

(3]

(4]
(3]

(6]

(71
(8]

(9]

[10]

[11]

[12]

[13]

[14]

C. Ferreira. Gene expression programming: A new adap-
tive algorithm for solving problems. Complex Systems,
13(2):87-129, 2001.

C. Ferreira. Discovery of the boolean functions to the best
density-classification rules using gene expression program-
ming. In E. Lutton, J. A. Foster, J. Miller, C. Ryan, and
A. G. B. Tettamanzi, editors, Proceedings of the 4th Euro-
pean Conference on Genetic Programming, EuroGP 2002,
volume 2278 of Lecture Notes in Computer Science, pages
51-60. Springer-Verlag,Berlin, Germany, 2002.

C. Ferreira. Gene Expression Programming: Mathemati-
cal Modeling by an Artificial Intelligence. Springer-Verlag,
Berlin, Germany, 2 edition, 2006.

D. E. Goldberg. Genetic Algorithms in search, Optimization
and Machine learning. Addison-Wesley, 1989.

X. D. Huang and C. J. Tang. A gene expression program-
ming based function discovery method. Computer Science,
30:278-282, 2003.

X. D. Huang, C. J. Tang, Z. Li, D. H. Pu, and Y. Liao.
Mining functions relationship based on gene expression pro-
gramming. Journal of Software, 15(suppl.):96 105, 2004.

J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.
X. Li, C. Zhou, W. M. Xiao, and P. C. Nelson. Prefix gene
expression programming. In Late Breaking Paper at Genetic
and Evolutionary Computation Conference, GECCO-2005,
Washington, D.C., USA, 2005.

M. Mitchell. an Introduction to Genetic Algorithms. MIT
Press, 1996.

M. Oltean and C. Grosan. Evolving evolutionary algorithms
using multi expression programming. In B. W, editor, the
7th European Conference on Artificial Life, volume 2801,
pages 651-658, Dortmund, 2003. LNAI , Springer-Verlag,
Berlin.

M. Oltean and C. Grosan. Evolving digital circuits using
multi expression programming. In R. Zebulum, D. Gwalt-
ney, G. Horbny, D. Keymeulen, J. Lohn, and A. Stoica, edi-
tors, NASA/DoD Conference on Evolvable Hardware, pages
87-90, Seatle, 2004. IEEE Press, NJ.

J. Peng, C. J. Tang, C. Li, and J. J. Hu. M-gep: A new
evolution algorithm based on multi-layer chromosomes gene
expression programming. Chinese Journal of Computer,
28(9):1459-1466, 2005.

J. Peng, C. J. Tang, C. Li, and J. J. Hu. A new evolu-
tionary algorithm based on chromosome hierarchy. NET-
WORK International Journal of Computers and Applica-
tions, 30(2):1-9, 2008.

J. Wu, C. J. Tang, Y. Jiang, S. Y. Ye, L. Duan, and T. Y.
Li. Mining recursive functions based on gene expression
programming”, based on gene expression programming.
Journal of Sichuan University (Natural Science Edition),
39(5):127-131, 2005.

