ADVANCED SCIENCE NEWS

HEALTHCARE ▼

SUSTAINABILITY ▼ TECHNOLOGY ▼

BASIC RESEARCH ▼

Gamma-Cyclodextrin-Recognizable Hydrogels

By Mara Staffilani

Posted on December 5, 2016

Stimuli-responsive smart hydrogels can dramatically change their volumes or other physical-chemical properties when triggered by

MOST READ THIS WEEK

- 1. SLIPS—Slippery Liquid Infused Porous Surfaces via...
- 2. Special Issue Bimetallic Nanomaterials 1
- 3. TB Off: Fighting Tuberculosis with Magnetic Triggers
- 4. Water and Cults in Nuragic Sardinia
- 5. Interview: Advances in Hydrogen **Storage Technologies**
- 6. Energy Perspectives: Arumugam Manthiram Describes...
- 7. Analyzing Potential Clean Energy Technology-Fuel...
- 8. In Remembrance of Prof. Hans-Joachim Cantow
- 9. Mass-Production of Flexible Solar Cells: Challenges...
- 10. Seeing from a Nanoelectrochemical Confined World

temperature, light, certain molecules or ions. Such hydrogels show great promise in many applications including switches, adsorbents, sensors, and drug carriers.

 $C_{\gamma\text{-CD}}$ $C_{\gamma\text{-CD}}$

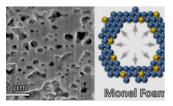
➤ PNIPAM networks 🏚 B12C4Am

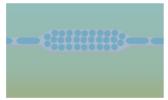
Combining the ionrecognition ability of

crown ether units and the thermo-induced volume change behavior of poly(*N*-isopropylacrylamide) (PNIPAM) polymers, different kinds of ion-responsive hydrogels have been developed. In addition to the ion-recognition abilities, crown ethers can also act as guest molecules to be captured by some macrocycle molecules.

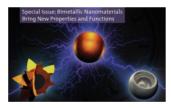
Recently, the Liang–Yin Chu group at Sichuan University have developed a novel smart hydrogel with benzo–12–crown–4 (B12C4) groups as molecular–recognition units and PNIPAM networks as phase–transition actuating units. The as–prepared hydrogel exhibits selective γ –cyclodextrin (γ –CD)–recognizable properties.

With B12C4 groups selectively included by γ -CD, the volume phase transition temperature VPTT value of as-prepared hydrogel increases to a higher value due to the formation of inclusion


Email Address*	
SUBSCRIBE	


operation temperature. Furthermore, the prepared hydrogel also shows thermoresponsive adsorption property selectively towards γ -CD. The γ -CD-recognition sensitivity of prepared hydrogel can be dramatically improved by increasing γ -CD concentration in solution or B12C4 content in hydrogel networks.

The proposed unique hydrogel is highly promising for the development of molecular-recognition sensors and switches, molecular separation systems, and so on. The design strategy of these smart hydrogels will provide valuable guidance for widening the practical applications of smart hydrogels.


RELATED POSTS

A New Process for Solid State Foaming of Nickel, Monel and Copper

Droplet Microfluidics for High-Throughput Screening of Disease Biomarkers

Special Issue Bimetallic Nanomaterials

minary areas reconsiques ses **Advanced Materials 2.0 free webinar** 9 sessions of cutting edge analytical solutions, on-demand

WILEY

WILEY

HOME ABOUT ADVERTISE WILEY.COM WILEY ONLINE LIBRARY IMPRESSUM PRIVACY

***Close cookie popup**This website uses cookies as per the **Wiley Cookie Policy**. By continuing to browse this site you accept this policy.

