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1

Some Preliminaries in Probability Theory

1.1 Measure and probability, integral and expectation

1.1.1 Basic notations

Fix a nonempty set Ω and a family F of subsets of Ω. F is called a σ-field on
Ω if, i) Ω ∈ F ; ii) Ω \A ∈ F whenever A ∈ F ; and iii)

⋃∞
i=1Ai ∈ F whenever

each Ai ∈ F .
If F is a σ-field on Ω, then (Ω,F) is called a measurable space. An element

A ∈ F is called a measurable set on (Ω,F), or simply a measurable set.
A map µ : F → [0,+∞] is called a measure on (Ω,F) if µ(∅) = 0 and

µ(
∞⋃

i=1

Ai) =
∞∑

i=1

µ(Ai) whenever Ai ∈ F and Ai
⋂
Aj = ∅, i, j = 1, 2, · · · , i 6= j.

The triple (Ω,F , µ) is called a measure space. µ is called totally finite (resp.
σ-finite) if µ(Ω) < ∞ (resp. there exist Ai ⊂ Ω so that Ω =

⋃∞
i=1Ai and

µ(Ai) <∞ for each i.
A probability space is a totally finite measure space (Ω,F , P ) for which

P (Ω) = 1; the measure P on a probability space is called a probability mea-
sure. In this case, a point ω ∈ Ω is called a sample, any A ∈ F is called an
event and P (A) represents the probability of event A.

A measure space (Ω,F , µ) is said to be complete if for any µ-null set
A ∈ F , i.e. µ(A) = 0, one has B ∈ F whenever B ⊂ A. Especially, one may
define complete probability space (Ω,F , P ). If an event A ∈ F is such that
P (A) = 1, then we may alternatively say that A holds, P -a.s., or simply A
holds a.s.

If (X,J ) is a topological space, then the smallest σ-field containing all
open sets J of X is called the Borel σ-field of X, denoted by B(X).

Let (Ω,F) and (Ω′,F ′) be two measurable spaces and f : Ω → Ω′ be a
map. We say f to be F/F ′-measurable or simply measurable if f−1(F ′) ⊂ F .
In particular if (Ω′,F ′) = (lRm,B(lRm)), then f is said to be a F-measurable
function. In the context of probability theory, f is called a F/F ′-random
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variable or simply a random variable if no confusion. When (Ω′,F ′) =
(lRm,B(lRm)), it is called a F-random variable. Note that measurable map
or random variable is defined without measures. Also, it is clear that measur-
able map and random variable are in fact a same notation.

For a random variable X : (Ω,F)→ (Ω′,F ′), X−1(F ′) is a sub-σ-field of
F , which is called the σ-field generated by X, denoted by σ(X).

Now, let us introduce an important notations, independence, which dis-
tinguishes probability theory from the usual measure theory.

Definition 1.1. Let (Ω,F , P ) be a probability space, A,B ∈ F . We say that
A and B are independent if P (A ∩ B) = P (A)P (B). Let J1 and J2 be two
subsets of F . We say that J1 and J2 are independent if P (A∩B) = P (A)P (B)
for any A ∈ J1 and B ∈ J2. Let X, Y : (Ω,F) → (lRm,B(lRm)) be two
random variables. We say that X and Y are independent if σ(X) and σ(Y )
are independent.

The following result is quite useful in probability theory.

Theorem 1.2. (Borel-Cantelli). Suppose that Ai be a sequence of measur-
able sets of a measure space (Ω,F , µ).

i) If
∞∑

i=1

µ(Ai) < +∞, then

µ( lim
i→∞

Ai) = 0.

ii) If (Ω,F , µ) is a probability space, and if Ai is a sequence of mutually

independent measurable sets, then the condition
∞∑

i=1

µ(Ai) = +∞ implies that

µ( lim
i→∞

Ai) = 1.

In the language of probability, i) states for probability contexts a condition
that (almost surely) an event occurs only finitely often and ii) states that, in
the independence case, if the condition is not satisfied, the event is almost
sure to occur infinitely often.

Let Xi, X0 : (Ω,F , µ)→ (lRm,B(lRm)), i = 1, 2, · · ·, be measurable func-
tions. We say that Xi converges to X a.e. if lim

i→∞
|Xi−X0| = 0, µ-a.e. We say

that Xi converges to X0 in measure if for any ε > 0, lim
i→∞

µ{|Xi−X0| > ε} = 0.

In particular, if µ is a probability measure, we say that Xi converges to X0

in probability.

Theorem 1.3. (Comparison of convergence in measure and conver-
gence almost everywhere). Suppose that (Ω,F , µ) is a complete measure
space, Xi, X0 : (Ω,F , µ)→ (lRm,B(lRm)), i = 1, 2, · · ·.

i) If Xi converges to X0 in measure, then there is a subsequence {Xni} of
{Xi} such that Xni → X0, µ-a.e. as i→∞.
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ii) Suppose in addition that µ is totally finite. Then the µ-a.e. convergence
of Xi to X0 implies that Xi converges to X0 in measure.

A function f on (Ω,F) is said to be simple if there is a finite, disjoint class
{E1, E2, · · · , En} of measurable sets and a finite set {α1, α2, · · · , αn} of real
numbers such that

f(x) =
n∑

i=1

αiχEi(x), x ∈ Ω. (1.1)

It is well-known that every measurable function is the limit of a sequence of
simple functions.

A simple function of the form (1.1) on a measure space (Ω,F , µ) is said
to be integrable (with respect to measure µ) if µ(Ei) < ∞ for every index i
for which αi 6= 0. The integral of f , in symbols∫

Ω

f(x)dµ(x), or
∫

Ω

fdµ,

is defined by ∫

Ω

f(x)dµ(x) =
n∑

i=1

αiµ(Ei).

A measurable function f on a measure space (Ω,F , µ) is said to be inte-
grable (with respect to measure µ) if there exists a sequence {fj} of integrable

simple functions such that {fj} converges to f a.e. and lim
j,k→∞

∫

Ω

|fj−fk|dµ =

0. Moreover, the integral of f is defined by∫

Ω

f(x)dµ(x) = lim
j→∞

∫

Ω

fj(x)dµ(x).

We refer to [1] for the properties of integrals defined above.
Let (Ω,F , P ) be a probability space and X : (Ω,F , P ) → lRm be a

random variable. If X is integrable, then we say that X has a mean, and
denoted by

EX =
∫

Ω

XdP.

We also call EX the (mathematical) expectation of X.

We denote LpF (Ω; lRm)
4
= Lp(Ω,F , P ; lRm) by the set of all random vari-

ables X such that |X|p has means. This is a Banach space with the norm

|X|LpF (Ω;lRm) =
(∫

Ω

|X|pdP
)1/p

. (1.2)

In particular, L2
F (Ω; lRm) is an Hilbert space.

The following results will play an important role in the sequel.

Theorem 1.4. If X and Y are independent integral random variables on a
probability space (Ω,F , P ) valued in lRm, then XY T is integrable, and

E(XY T ) = (EX)(EY )T . (1.3)
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1.1.2 Signed measures

We begin with the following definition.

Definition 1.5. Let (Ω,F) be a measurable space. A map µ : F → [−∞,+∞]

is called a signed measure if 1) µ(∅) = 0; 2) µ
( ∞⋃

j=1

Aj

)
=
∞∑

j=1

µ(Aj) for all

Aj ∈ F such that Aj ∩ Ak = ∅, j 6= k, j, k = 1, 2, · · ·; and 3) µ assumes at
most one of the values +∞ and −∞.

Example 1.6. Let f be an integral function in (Ω,F , µ). Then

ν(A) =
∫

A

fdµ, ∀A ∈ F ,

defines a signed measure in (Ω,F). More generally, the above ν is still a signed
measure if f is a measurable function in (Ω,F), and one of f+ and f−, the
positive and negative part of f , is integrable in (Ω,F , µ).

If µ is a signed measure on a measure space (Ω,F), we shall call a set
E ⊂ Ω positive (resp. negative) (with respect to µ) if for every F ∈ F , E ∩F
is measurable, and µ(E ∩ F ) ≥ 0 (resp. µ(E ∩ F ) ≤ 0).

Theorem 1.7. If µ is a signed measure on a measure space (Ω,F), then there
exist two disjoint sets A and B, whose union is Ω, such that A is positive and
B is negative with respect to µ.

The sets A and B in Theorem 1.7 are said to form a Hahn decomposition
of Ω with respect to µ. It is not difficult to construct examples to show that
a Hahn decomposition is not unique. If, however,

Ω = A1 ∪B1 and Ω = A2 ∪B2

are two Hahn decomposition of Ω, then it is easy to show that, for every
measurable set E, it holds

µ(E ∩A1) = µ(E ∩A2) and µ(E ∩B1) = µ(E ∩B2).

From this fact, we may define unambiguously two set functions µ+ and µ−

on (Ω,F) as follows:

µ+(E) = µ(E ∩A), µ−(E) = −µ(E ∩B), ∀ E ∈ F .

We call µ+ and µ− respectively the upper variation and the lower variation
of µ. The set function |µ|, defined for every E ∈ F by

|µ|(E) = µ+(E) + µ−(E)
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is called the total variation of µ. Obviously

µ(E) = µ+(E)− µ−(E), |µ|(E) ≥ |µ(E)|.
Also, it is easy to show that the upper, lower, and the total variations of a
signed measure µ are measures.

A signed measure µ on a measurable space (Ω,F) is said to be totally
finite if for any E ∈ F , one has |µ(E)| <∞; µ is said to be totally σ-finite if
for any E ∈ F , there exists a sequence {Ej}∞j=1 ⊂ F such that |µ(Ej)| < ∞
for every j and E ⊂ ⋃∞j=1Ej .

Let (Ω,F) be a measurable space, f : (Ω,F) → (lRm,B(lRm)) be a
measurable function, µ be a signed measure on (Ω,F). If f is integrable with
respect to |µ| = µ+ + µ−, then f is said to be integrable in Ω with respect to
µ. We call ∫

Ω

fdµ+ −
∫

Ω

fdµ−

the integral of f in Ω with respect to µ, and denote it by
∫
Ω
fdµ. Let E be a

measurable set, we define
∫

E

fdµ =
∫

Ω

χEfdµ.

The properties of the integral with respect to a signed measure is similar
to the usual integral except that all conditions such as “null measure sets” or
“almost everywhere” with respect to µ should be changed to that with respect
to |µ|. Note that the µ-null set may be very “large”.

Definition 1.8. If (Ω,F) is a measurable space and µ and ν are two signed
measures on F , we say that ν is absolutely continuous with respect to µ, in
symbols ν << µ, if ν(E) = 0 for every E ∈ F with |µ|(E) = 0.

We proceed now to state the fundamental result concerning absolute con-
tinuity, which is known as Radon-Nikodym theorem.

Theorem 1.9. Let (Ω,F) be a measurable space, µ and ν are two totally σ-
finite signed measures and ν << µ. Then there is a finite valued measurable
function f on Ω such that

ν(E) =
∫

E

fdµ, ∀ E ∈ F .

The function f is unique in the sense that if also ν(E) =
∫
E
f1dµ for some

finite valued measurable function f1 on Ω and for all E ∈ F , then f = f1,
|µ| − a.e.

The function f in Theorem 1.9 is called Radon-Nikodym derivative, and
denoted by

f =
dµ

dν
.

By Theorem 1.9, it is easy to conclude that
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Theorem 1.10. Let the assumptions in Theorem 1.9 hold and g is a finite
valued measurable function. Then g is integrable with respect to µ if and only
if g dµdν is integrable with respect to ν. Furthermore,

∫

E

gdµ =
∫

E

g
dµ

dν
dν, ∀ E ∈ F .

Let (Ω,F , µ) be a measure space, (Ω′,F ′) be a measurable space, and
Φ : (Ω,F)→ (Ω′,F ′) be a measurable map. Then Φ induces a measure ν on
(Ω′,F ′) via

ν(A′)
4
= µ(Φ−1(A′)), ∀ A′ ∈ F ′. (1.4)

The following is a change-of-variable formula:

Theorem 1.11. Let ν be the measure induced by Φ from µ. Then f is inte-
grable in Ω with respect to µ if and only if f ◦Φ is integrable in Ω′ with respect
to ν. Furthermore, ∫

Ω

fdµ =
∫

Ω′
f ◦ Φdν.

1.1.3 Distribution, density, characteristic function and normal
distribution

Let (Ω,F , P ) be a probability space, (Ω′,F ′) be a measurable space, and
X : (Ω,F) → (Ω′,F ′) be a random variable. Then X induces a probability
measure PX on (Ω′,F ′) via

PX(A′)
4
= P (X−1(A′)), ∀ A′ ∈ F ′. (1.5)

We call PX the distributions of random variable X. In the case of (Ω′,F ′) =
(lRm,B(lRm)), PX can be uniquely determined by the following function:

F (x)
4
= F (x1, · · · , xm)

4
= P{Xi ≤ xi, 1 ≤ i ≤ m}, (1.6)

where x = (x1, · · · , xm) and (X1, · · · , Xm) = X. We call F (x) the distribution
function of X.

If we assume PX is absolutely continuous with respect to the Lebesgue
measure, then by Radon-Nikodym theorem, there exists a (nonnegative) func-
tion f ∈ L1(lRm) such that

PX(A) =
∫

A

f(x)dx, ∀ A ∈ B(lRm). (1.7)

In particular, one has

F (x) =
∫ x1

−∞
· · ·
∫ xm

−∞
f(ξ1, · · · , ξm)dξ1 · · · dξm. (1.8)
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The function f(x) is called the density of the random variable X. As a special
case, if f(x) is of the following form:

f(x) = [(2π)m detC]−1/2 exp
{
−1

2
(x− λ)C−1(x− λ)T

}
, x ∈ lRm, (1.9)

where λ ∈ lRm, C ∈ lRm×m with CT = C > 0, then we say that X has a
normal distribution with parameter (λ,C) and denoted by N (λ,C).

Now, for any X,Y ∈ L2
F (Ω; lRm), we define the covariance (matrix) of X

and Y by
Cov (X,Y )

4
= E((X − EX)T (Y − EY )). (1.10)

In particular,
VarX

4
= Cov (X,X) (1.11)

is called the variance (matrix) of X.
It is not difficult to show that for a normal distribution N (λ,C), λ is the

mean and C is the covariance matrix.
Finally, for any lRm-valued random variable X (which is not necessarily

in L1
F (Ω; lRm)), the following is always well-defined:

ϕX(x) = Eeiξ·X =
∫

Ω

eiξ·X(ω)P (dω), ∀ ξ ∈ lRm. (1.12)

We call ϕX(x) the characteristic function of X.

Theorem 1.12. A random variable X has a normal distribution N (λ,C) if
and only if

ϕX(ξ) = exp
{
iξλT − 1

2
ξCξT

}
, ξ ∈ lRm. (1.13)

Note that, ϕX(ξ) given by (1.13) is still a characteristic function even if
detC = 0. In this case, X is called a degenerate normal distribution.

1.1.4 Conditional expectation

We recall the following definition introduced in the elementary probability
theory:

Definition 1.13. Let (Ω,F , P ) be a probability space, B ∈ F with P (B) > 0.
For any event A ∈ F , put

P (A |B) =
P (A ∩B)
P (B)

.

Then P (· |B) is a probability on (Ω,F), which is called the conditional prob-
ability given event B, and denoted by PB(·). For any given A ∈ F , P (A |B)
is called the conditional probability of A given B.



12 1 Some Preliminaries in Probability Theory

Definition 1.14. Let (Ω,F , P ) be a probability space, and X be a random
variable. The conditional expectation of X given an event B ∈ F with P (B) >
0 is defined by

E(X |B) =
∫

Ω

XdPB =
1

P (B)

∫

B

XdP.

Clearly, the conditional expectation of X given an event B represents the
average value of X on B. On the other hand, it is easy to see that, the
conditional probability of A given B can be regarded as a special case of
conditional expectation, i.e.,

P (A |B) = E(χA |B), A ∈ F .

In many concrete problems, it is not enough to consider the conditional
expectation given only one event. Instead, it is quite useful to define the con-
ditional expectation to be a suitable random variable. For example, when con-
sider two conditional expectations E(X |B) and E(X |Bc) simultaneously, we
simply define it as a function E(X |B)χB(ω) +E(X |Bc)χBc(ω) rather than
regarding it as two numbers. Generally, we introduce the following definition.

Definition 1.15. Let (Ω,F , P ) be a probability space, {Bk}∞k=1 ⊂ F be a
partition of Ω (i.e.,

⋃∞
k=1Bk = Ω and Bk

⋂
B` = ∅ whenever k 6= `), and

P (Bk) > 0 for all k = 1, 2, · · ·. Put J = σ{B1, B2, · · ·} and assume X to be a
random variable with mean EX. Then the following J -measurable function

E(X | J )(ω)
4
=
∞∑

k=1

E(X |Bk)χBk(ω)

is called the conditional expectation of X given σ-field J .

Clearly, when J = σ{B1, B2, · · ·}, the conditional expectation E(X|J ) of
X takes its average value in every atom Bk of J . Also, it is easy to check that

∫

Bk

E(X | J )dP =
∫

Bk

XdP, k = 1, 2, · · · . (1.14)

Now, for any given probability space (Ω,F , P ), let us consider the more
general case that J ⊂ F is any given sub-σ-field (hence J need not to be a
partition of Ω). Let X be a random variable with mean EX (which may be
infinite). Stimulated by (1.14), we define a set function on J by

ν(B)
4
=
∫

B

XdP, ∀ B ∈ J .

It is easy to see that ν is a signed measure on (Ω,J ). In view of Radon-
Nikodym theorem, one may find a unique J -measurable function, denoted by
E(X | J ), such that
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∫

B

E(X | J )dP =
∫

B

XdP, ∀ B ∈ J . (1.15)

This leads to the following notion:

Definition 1.16. E(X | J ), determined by (1.15), is called the conditional
expectation of X given σ-field J .

We collect some basic properties of the conditional expectation as follows.

Theorem 1.17. Let J be a sub-σ-field of F . Then the following conclusions
hold:

(1) The map E(· | J ) : L1
F (Ω, lRm) → L1

J (Ω, lRm) is linear and continu-
ous.

(2) E(a | J ) = a, P |J − a.s., ∀ a ∈ lR.
(3) If X,Y ∈ L1

F (Ω, lR) with X ≥ Y , then

E(X | J ) ≥ E(Y | J ), P |J − a.s.

(4) Let X ∈ L1
J (Ω; lRm) and Y ∈ L1

F (Ω; lRk) with XY T ∈ L1
F (Ω; lRm×k).

Then
E(XY T | J ) = XE(Y | J )T , P |J − a.s.

In particular, E(X | J ) = X, P |J − a.s. Also, for any Z ∈ L1
F (Ω; lRm),

E(E(Z | J )Y T | J ) = E(Z | J )E(Y | J )T , P |J − a.s.

(5) A random variable X is independent of J if and only if for any Borel
measurable function f such that Ef(X) exists, it holds

E(f(X) | J ) = Ef(X), P |J − a.s.

(6) Let J ′ ⊂ be a sub-σ-field of J . Then

E(E(X | J ) | J ′) = E(E(X | J ′) | J ) = E(X | J ′), P |J ′ − a.s.

(7) (Jensen’s inequality) Let X ∈ L1
F (Ω; lRm) and φ : lRm → lR be a

convex function such that φ(X) ∈ lRm → lR. Then

φ(E(X | J )) ≤ E(φ(X) | J ), P |J − a.s.

In particular, for any p ≥ 1, we have
∣∣∣E(X | J )

∣∣∣
p

≤ E(|X|p | J ), P |J − a.s.

provided that E|X|p exists.

Remark 1.18. Given two sub-σ-fields J k (k = 1, 2) of F and a random variable
X, generally

E(E(X|J 1)|J 2) 6= E(E(X|J 2)|J 1) 6= E(X|J 1 ∩ J 2), P |J 1∩J 2 − a.s.
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1.2 Stochastic processes

In this section, we recall some elements on stochastic processes. In particular,
we will study a special class of stochastic process, Brownian Motion, which
will play a fundamental role in the sequel.

1.2.1 General considerations

Let us fix a probability space (Ω,F , P ). We begin with the following definition:

Definition 1.19. Let I be a nonempty index set and (U, d) be a metric
space with metric d. A family of random variables {X(t)}t∈I from (Ω,F) →
(U,B(U)) is called a stochastic process. For any ω ∈ Ω, the map t ∈ X(t, ω)
is called a sample path (of X).

In what follows, we will choose I = [0, T ] with T > 0, or I = [0,∞).
We will interchangeably use {X(t)}t∈I , X(·), X(t), or even X to denote a
stochastic process. Also, a stochastic process will be simply called a process
if no ambiguity.

Usually, we will choose (U, d) as lRm with the standard topology. In this
case, for a given stochastic process {X(t)}t∈I , we set

Ft1,···,tj (x1, · · · , xj) 4= P
{
X(t1) ≤ x1, · · · , X(tj) ≤ xj

}
, (1.16)

where j = 1, 2, · · ·, ti ∈ I, xi ∈ lRm and X(ti) ≤ xi stands for componentwise
inequalities (i = 1, · · · , j). Functions defined in (1.16) are called the finite
dimensional distributions of process X.

As that done by the distribution function of random variable, the finite
dimensional distributions Ft1,···,tj (x1, · · · , xj) of X include the main probabil-
ities of the process.

Definition 1.20. Two processes X(t) and X(t) are said to be stochastically
equivalent if

X(t) = X(t), P − a.s., ∀ t ∈ I.
In this case, one is said to be a modification of the other.

Obviously, when X(t) and X(t) are stochastically equivalent, their finite
dimensional distributions are the same. However, the P -null set Nt depends
on t. Therefore, the sample paths of X(t) and X(t) can differ significantly.
Here is a simple example.

Example 1.21. Let Ω = [0, 1], T ≥ 1, P be the Lebesgue measure, X(t, ω) ≡ 0,
and

X(t, ω) =
{

0, ω 6= t,
1, ω = t.
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Then X(t) and X(t) are stochastically equivalent. But, each sample path
X(· , ω) is continuous and none of the sample paths X(· , ω) is continuous. In
the present case, we actually have

⋃

t∈[0,1]

Nt = [0, 1] ≡ Ω.

Definition 1.22. We say that a process X(t) to be stochastically continuous
at s ∈ [0, T ] if for any ε > 0,

lim
t→s

P{|X(t)−X(s)| > ε} = 0.

Moreover, X(t) is said to be continuous if there is a P−null set N ∈ F , such
that for any ω ∈ Ω \N , the sample path X(·, ω) is continuous.

Similarly, one can define the left and the right (stochastically) continuity
of a process. It is obvious that continuity implies stochastic continuity.

Next, for a given measurable space (Ω,F), we introduce a monotone family
of sub-σ-fields Ft ⊂ F , t ∈ [0, T ]. Here, by monotonicity we mean that

Ft1 ⊂ Ft2 , ∀ 0 ≤ t1 ≤ t2 ≤ T.

Such a family is called a filtration. For any t ∈ [0, T ], we put

Ft+ 4=
⋂
s>t

Fs, Ft− 4=
⋃
s<t

Fs.

If Ft+ = Ft (resp. Ft− = Ft), then {Ft}t≥0 is said to be right (resp.
left) continuous. We call (Ω,F , {Ft}t≥0) a filtered measurable space and
(Ω,F , {Ft}t≥0, P ) a filtered probability space.

In the sequel, we will say that (Ω,F , {Ft}t≥0, P ) satisfy the usual condition
if (Ω,F , P ) is complete, F0 contains all P−null sets in F , and {Ft}t≥0 is right
continuous.

Definition 1.23. Let (Ω,F , {Ft}t≥0) be a filtered measurable space and X(t)
be a process which values in a metric space (U, d).

(1) X(t) is said to be measurable if the map (t, ω) 7→ X(t, ω) is (B[0,∞)×
F)/B(U)-measurable;

(2) X(t) is said to be {Ft}t≥0-adapted if for all t ≥ 0, the map ω 7→ X(t, ω)
is Ft/B(U)-measurable;

(3) X(t) is said to be {Ft}t≥0-progressively measurable if for all t ≥ 0, the
map (s, ω) 7→ X(s, ω) is (B[0, t]×Ft)/B(U)-measurable.

It is clear that if X(t) is {Ft}t≥0-progressively measurable, it must be
measurable and {Ft}t≥0-adapted. Conversely, it can be proved that, for any
measurable and {Ft}t≥0-adapted process X(t) on a filtered probability space,
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there is a {Ft}t≥0-progressively measurable process X̃(t) which is stochasti-
cally equivalent to X(t). For this reason, unless otherwise indicated, in the
sequel, in a filtered probability space, by saying that a process X(t) is {Ft}t≥0-
adapted, we mean that X(t) is {Ft}t≥0-progressively measurable.

Let H be a Banach space and (Ω,F , {Ft}t≥0, P ) be a filtered probability
space satisfying the usual condition. We denote by LpF (0, T ;H) the set of all
H−valued {Ft}t≥0-adapted process X(·) such that

E

∫ T

0

|X(t)|pHdt <∞;

by L∞F (0, T ;H) the set of all H−valued {Ft}t≥0-adapted essentially bounded
processes; and by LpF (Ω;C([0, T ];H)) the set of all H−valued {Ft}t≥0-
adapted continuous process X(·) such that

E(|X(·)|pC([0,T ];H)) <∞.

In the sequel, we simply write LpF (0, T ; lR) as LpF (0, T ). One has a similar
notations for L∞F (0, T ) and LpF (Ω;C[0, T ]).

1.2.2 Brownian motion

We now introduce an extremely important example of stochastic process,
called the Brownian motion.

The Brownian motion of pollen particles in a liquid, which owes its name to
its discovery by the English botanist R. Brown in 1827, is due to the incessant
hitting of pollen by the much small molecules of the liquid. The hits occur
a large number of times in any small interval of time, independently of each
other and the effect of a particular hit is so small compared to the total effect.
The physical theory of this motion was set up by A. Einstein in 1905. It’s
suggested that this motion is random, and has the following properties:

1) The displacement of a pollen particle over disjoint time intervals are
independent (random variables);

2) The displacements are Gaussian random variables;
3) The motion is continuous.
Property 1) means the Brownian motion has independent increments.

Property 2) is not surprising in view of the central-limit theorem.
Now, let us give a mathematical definition of the Brownian motion.

Definition 1.24. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability. A contin-
uous {Ft}t≥0-adapted lRm-valued process W (·) is called a m-dimensional
{Ft}t≥0-Brownian motion over [0,∞), if for all 0 ≤ s < t <∞, W (t)−W (s)
is independent of Fs, and is normally distributed with mean 0 and covariance
(t−s)I. In addition, if P (W (0) = 0) = 1, then W (·) is called a m-dimensional
standard {Ft}t≥0-Brownian motion over [0,∞).
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One can also define a Brownian motion W (·) naturally over any time
interval [a, b] or [a, b) for any 0 ≤ a < b ≤ ∞.

In general, if W (·) is a Brownian motion defined on some filtered proba-
bility space (Ω,F , {Ft}t≥0, P ), we may define

FWt
4
= σ(W (s), 0 ≤ s ≤ t) ⊂ Ft, ∀ t ≥ 0. (1.17)

Generally, filtration {FWt }t≥0 is left-continuous, but not necessarily right-
continuous. On the other hand, the augmentation {F̂Wt }t≥0 of {FWt }t≥0 by
adding all P -null sets is continuous, and W (t) is still a Brownian motion on
the (augmented) filtered probability space (Ω,F , {F̂t}t≥0, P ) (see [2, p. 89 and
p. 122] for detailed discussion). In the sequel, by saying that {Ft}t≥0 is the
natural filtration generated by the Brownian motionW , we mean that {Ft}t≥0

is generated as (1.17) with the above augmentation, (and hence {Ft}t≥0 is
continuous).

We collect a few properties of Brownian motion.

Proposition 1.25. Let W be a standard Brownian motion. Then
(i) (time-homogeneity). For any a > 0, the process W (t+a)−W (a), t ≥ 0,

is a Brownian motion independent of σ(W (u), u ≤ a);
(ii) (symmetry). The process −W (t), t ≥ 0, is a Brownian motion;
(iii) (scaling). For any λ > 0, the process λ−1W (λ2t), t ≥ 0, is a Brownian

motion;
(iv) (time-inversion). The process X, defined by X0 = 0, X(t) = tW (t−1)

for t > 0, is a Brownian motion;
(v) For any x ∈ lRm, the process W x(t) = x+W (t) is called the Brownian

motion started at x. Obviously, for any A ∈ B(lRm), t > 0,

P (W x(t) ∈ A) =
1

(2πt)m/2

∫

A

exp
{
−|x− y|

2

2t

}
dy.

(vi) If W1(t), · · · ,Wk(t) are k independent copies of a m-dimensional
Brownian motion W0(t), then W (t) = (W1(t), · · · ,Wk(t))T is a mk-dimensional
Brownian motion. Obviously, if W (t) is a mk-dimensional Brownian motion,
then W1(t), · · · ,Wk(t) are k independent m-dimensional Brownian motion.

(vii) For any 0 ≤ s ≤ t, it holds
{
E(W (t)−W (s) | Fs) = 0, P − a.s.
E((W (t)−W (s)(W (t)−W (s))T | Fs) = (t− s)I, P − a.s.

We shall define the integral
∫ T

0

X(t)dW (t) (1.18)

of a stochastic process X(·) with respect to a Brownian motion W (t). Such
an integral will play an essential role in the sequel. Note that if for ω ∈ Ω ,
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the map t 7→ W (t, ω) was of bounded variation, then a natural definition of
(1.18) would be a Lebesgue-Stieltjes type integral, regarding ω as a parameter.
Unfortunately, we will see below that the map t 7→W (t, ω) is not of bounded
variation for almost all ω. Thus one needs to define (1.18) in a different way.

Theorem 1.26. Let W (t) be a (one-dimensional) Brownian motion. Then,
for almost all ω ∈ Ω , the map t 7→W (t, ω) is nowhere differentiable.

Proof. It suffices to show that

P ( lim
s→0+

|W (t+ s)−W (t)|
s

= +∞) = 1, ∀ t ≥ 0.

For this purpose, for any t ≥ 0, s > 0 and positive integer n, denote

At,n,s
4
= (|W (t+ s)−W (t)| < ns).

Noting that W (t+ s)−W (t) ∼ N (0, s), we get

P (At,n,s) =
1√
2πs

∫ ns

−ns
e−

x2
2s dx ≤ C√s,

where C = C(n) > 0 is a generic constant. We choose a sequence {sk}∞k=1 so

that
∞∑

k=1

√
sk <∞. Then

∞∑

k=1

P (At,n,sk) <∞.

Now, thanks to the Borel-Cantalli’s theorem, we conclude that

P ( lim
k→∞

(At,n,sk)c) = 1.

Denote
At,n = lim

k→∞
(At,n,sk)c.

Then for any ω ∈ At,n, there is a k(ω), such that
∣∣∣∣
W (t+ sk, ω)−W (t, ω)

sk

∣∣∣∣ ≥ n, ∀ k ≥ k(ω).

Therefore,

lim
s→0+

|W (t+ s, ω)−W (t, ω)|
s

≥ n, ∀ ω ∈ At,n.

Put
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B =
⋂

n≥1

At,n.

Then, P (B) = 1, and

lim
s→0+

|W (t+ s, ω)−W (t, ω)|
s

= +∞, ∀ ω ∈ B.

This completes the proof.

1.3 Stopping times

In this section, we shall introduce a special class of random variables, which
is one of fundamental notions in the modern probability theory.

Definition 1.27. Let (Ω,F , {Ft}t≥0) be a filtered measurable space. A map-
ping τ : Ω → [0,∞] is called a {Ft}t≥0-stopping time if

(τ ≤ t) ∈ Ft, ∀ t ≥ 0.

Obviously, when τ is a stopping time, it is a positive random variable
taking possibly infinite values. Further, define

Fτ =
{
A ∈ F

∣∣∣ A ∩ (τ ≤ t) ∈ Ft, ∀ t ≥ 0
}
.

It is clear that Fτ is a sub-σ-field of F . The sets in Fτ can be thought of
as events which may occur before time τ . The constants, i.e., τ(ω) ≡ s for
every ω, are stopping times and in that case Fτ = Fs (recall that {Ft} can
be considered as describing the history of some phenomenon and Ft is the σ-
fields of events prior to some t). Stopping times thus appear as generalizations
of constant times for which one can define a “past” which is consistent with
the “pasts” of constant times. A stopping time τ is a random variable such
that the event “τ has occurred up to time t” depends only on the history up
to time t, and not on any further information about future.

By means of the right-continuity of Ft, one has

Proposition 1.28. (i) A map τ : Ω → [0,∞] is a stopping time if and only
if (τ < t) ∈ Ft for all t > 0.

(ii) Let τ be a stopping time. Then A ∈ Fτ if and only if A∩ (τ < t) ∈ Ft
for all t > 0.

A stopping time may be thought of as the first time when some physical
event occurs.

Example 1.29. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space and X(t)
be a {Ft}t≥0-adapted and continuous process with values in lRm. Let V ⊂ lRm

be an open set. Then the first hitting time of the process X(t) to V , i.e.,
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σV (ω)
4
= inf

{
t ≥ 0

∣∣∣ X(t, ω) ∈ V
}
,

and the first exit time of the process X(t) from V , i.e.,

τV (ω)
4
= inf

{
t ≥ 0

∣∣∣ X(t, ω) 6∈ V
}

are both {Ft}t≥0-stopping times. (Here, we agree that inf ∅ 4= +∞).

The basic properties of stopping times are listed in the following proposi-
tion.

Proposition 1.30. Let σ, τ and σi (i = 1, 2, · · ·) are stopping times. Then
(i) σ+ τ , sup

i
σi, inf

i
σi, lim

i→∞
σ and lim

i→∞
σ are stopping times. Also, events

(σ > τ), (σ ≥ τ) and (σ = τ) belong to Fσ∧τ ;

(ii) The process Y (t)
4
= τ ∧ t is {Ft}t≥0-progressively measurable;

(iii) For any A ∈ Fσ, it holds

A ∩ (σ ≤ τ) ∈ Fτ .

In particular, if σ ≤ τ , P -a.s., then Fσ ⊂ Fτ ;
(iv) Let σ̂ = inf

i
σi. Then

⋂

i

Fσi = Fσ̂;

In particular, Fσ1 ∩ Fσ2 = Fσ1∧σ2 .

The following result will be sometimes technically useful.

Proposition 1.31. Every stopping time is the decreasing limit of a sequence
of stopping times taking only finitely many values.

Proof. For a stopping time τ , one sets

τk =
k2k∑
q=1

q

2k
χ( q−1

2k
≤τ< q

2k
) + (+∞)χ(τ≥k).

It is easy to check that τk is a stopping time and that {τk} decreases to τ .

The following result provides a characterization of Fτ -random variable.

Proposition 1.32. Let τ be a stopping time and ξ be a random variable with
values in lRm. Then ξ is Fτ -measurable if and only if ξχ(τ≤t) is Ft-measurable
for all t ≥ 0.
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Proof. It suffices to consider the case m = 1. If ξ ∈ Fτ , then there is a
sequence of Fτ -measurable simple functions

ξj
4
=
∑

i

ξijχAij → ξ, as j →∞, P − a.s.,

where ξij ∈ lR and Aij ∈ Fτ . Obviously,

ξjχ(τ≤t) =
∑

i

ξijχAij∩(τ≤t)

is Ft-measurable. Letting j → ∞, we see that ξχ(τ≤t) is also Ft-measurable
for all t ≥ 0.

Conversely, if for all t ≥ 0, ξχ(τ≤t) is Ft-measurable, then we have

(ξ ≤ a) ∩ (τ ≤ t) = (ξχ(τ≤t) ≤ a) ∈ Ft, ∀ a < 0,
(ξ > a) ∩ (τ ≤ t) = (ξχ(τ≤t) > a) = (ξχ(τ≤t) ≤ a)c ∈ Ft, ∀ a ≥ 0.

Therefore, (ξ ≤ a) ∈ Fτ for all a ∈ lR. This implies that ξ is Fτ -measurable.

Proposition 1.33. Let σ and τ be stopping times and X be an integrable
random variable with values in lRm. Then





χ(σ>τ)E(X | Fτ ) = E(χ(σ>τ)X | Fτ ) = χ(σ>τ)E(X | Fσ∧τ ),
χ(σ≥τ)E(X | Fτ ) = E(χ(σ≥τ)X | Fτ ) = χ(σ≥τ)E(X | Fσ∧τ ),
E(E(X | Fτ ) | Fσ) = E(X | Fσ∧τ ).

Proof. The first equalities in the first two assertions are obvious.
To prove the second equality in the first assertion, we note that

χ(σ>τ)E(X | Fτ )χ(σ∧τ≤t) = E(X | Fτ )χ(τ≤t)χ(σ>τ, σ∧τ≤t).

Recall that E(X | Fτ ) is Fτ -measurable. Thus, by Proposition 1.32,
E(X | Fτ )χ(τ≤t) is Ft-measurable. Recall also that (σ > τ) ∈ Fσ∧τ .
Thus χ(σ>τ, σ∧τ≤t) is Ft-measurable. Hence χ(σ>τ)E(X | Fτ )χ(σ∧τ≤t) is Ft-
measurable for all t ≥ 0. Hence, by Proposition 1.32 again, χ(σ>τ)E(X | Fτ )
is Fσ∧τ -measurable. Then,

χ(σ>τ)E(X | Fτ ) = E(χ(σ>τ)E(X | Fτ ) | Fσ∧τ )
= χ(σ>τ)E(E(X | Fτ ) | Fσ∧τ ) = χ(σ>τ)E(X | Fσ∧τ ),

which proves the first assertion. The second one can be proved similarly. Fi-
nally,

E(E(X | Fτ ) | Fσ)
= E(χ(σ>τ)E(X | Fτ ) | Fσ) + E(χ(τ≥σ)E(X | Fτ ) | Fσ)
= E(χ(σ>τ)E(X | Fσ∧τ ) | Fσ) + χ(τ≥σ)E(E(X | Fτ ) | Fτ∧σ)
= χ(σ>τ)E(X | Fσ∧τ ) + χ(τ≥σ)E(X | Fτ∧σ)
= E(X | Fτ∧σ),
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which gives the third assertion.
Finally, we show the following interesting result.

Proposition 1.34. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space and
X(t) be a {Ft}-progressively measurable process with values in lRm, and τ be
a {Ft}-stopping time. Then the random variable X(τ) is Fτ -measurable and
the process X(τ ∧ t) is {Ft}-progressively measurable.

Proof. We first prove that X(τ ∧ t) is a {Ft}-progressively measurable
process. Recall the process τ ∧ t is {Ft}-progressively measurable. Thus for
each t ≥ 0, the map (s, ω) 7→ (τ(ω)∧s, ω) is measurable from ([0, t]×Ω,B[0, t]×
Ft) into itself. On the other hand, by the progressively measurability of X(t),
the map (s, ω) 7→ X(s, ω) is measurable from ([0, t] × Ω,B[0, t] × Ft) into
(lRm,B(lRm)). Hence, the map (s, ω) 7→ X(τ(ω) ∧ s, ω) is measurable from
([0, t] × Ω,B[0, t] × Ft) into (lRm,B(lRm)), which yields the {Ft}-progressive
measurability of X(τ ∧ t). In particular, X(τ ∧ t) is {Ft}-measurable for all
t ≥ 0.

Next, for any B ∈ B(lRm),

(X(τ) ∈ B) ∩ (τ ≤ t) = (X(τ ∧ t) ∈ B) ∩ (τ ≤ t) ∈ Ft, ∀ t ≥ 0.

Therefore, (X(τ) ∈ B) ∈ Fτ . Thus X(τ) is Fτ -measurable.

1.4 Uniform integrability

We fix a probability space (Ω,F , P ).

Definition 1.35. Suppose K ⊂ L1
F (Ω; lRm). We call K to be a uniformly

integrable subset of L1
F (Ω; lRm) if

∫

(|X|≥s)
|X|dP

converges to 0 uniformly for X ∈ K as s→ +∞.

Obviously, if K is a uniformly integrable subset of L1
F (Ω; lRm), then it is

also bounded in L1
F (Ω; lRm).

Proposition 1.36. Let ξ ∈ L1
F (Ω; lRm), and {Fα}α∈Λ be a family of sub-σ-

fields. Then {E(ξ | Fα)}α∈Λ is uniformly integrable.

Proof. For any s > 0,

P (|E(ξ | Fα)| ≥ s) ≤ s−1E|E(ξ | Fα)| ≤ s−1E|ξ|, ∀ α ∈ Λ.

Hence
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∫

(|E(ξ | Fα)|≥s)
|E(ξ | Fα)|dP ≤

∫

(|E(ξ | Fα)|≥s)
|ξ|dP

≤ √sP (|E(ξ | Fα)| ≥ s) +
∫

(ξ|≥√s)
|ξ|dP ≤ 1√

s
E|ξ|+ +

∫

(ξ|≥√s)
|ξ|dP,

which yields the uniform integrability of {E(ξ | Fα)}α∈Λ.
We have the following characterization of L1-convergence in terms of the

uniform integrability.

Theorem 1.37. Let X0, X1, X2, · · · be integrable random variables. Then
Xn → X0 in L1

F (Ω; lRm) as n → ∞ if and only if {Xn} converges to X0

in probability and {Xn | n ∈ lN} is uniformly integrable.

For nonnegative random variable, we have the following simple result:

Theorem 1.38. Let X0, X1, X2, · · · be nonnegative integrable random vari-
ables. Then Xn → X0 in L1

F (Ω) as n→∞ if and only if {Xn} converges to
X0 in probability and lim

n→∞
EXn = Eξ.

Proof. The “only if” part is obvious. We now show the “if” part.
By 0 ≤ Xn ∧ ξ ≤ ξ ∈ L1

F (Ω), we get

lim
n→∞

E(Xn ∧ ξ) = Eξ.

On the other hand, by lim
n→∞

EXn = Eξ, one deduces that

lim
n→∞

E(Xn + ξ) = 2Eξ.

Hence, from
Xn + ξ = Xn ∧ ξ +Xn ∨ ξ, ∀ n ∈ lN,

we find
lim
n→∞

E(Xn ∨ ξ) = Eξ.

Hence

lim
n→∞

E|Xn − ξ| = lim
n→∞

E(Xn ∨ ξ)− lim
n→∞

E(Xn ∧ ξ) = 0.

This gives the L1-convergence.

1.5 Martingales

Let I be the time parameter set: I = {0, 1, 2, · · ·} in the discrete time case or
I = [0,∞) in the continuous time case. Let Î = [0,∞]. Let (Ω,F , {Ft}t∈I , P )
be a filtered probability space. Recall that for the continuous time case, {Ft}
is assumed to be right-continuous.



24 1 Some Preliminaries in Probability Theory

Definition 1.39. A real {Ft}-adapted process X = {X(t)}t∈I is called a
{Ft}-martingale (resp. supermartingale, submartingale) if

i) X(t) is integrable for each t ∈ I;
ii) E(X(t) | Fs) = X(s) (resp. ≤ X(s), ≥ X(s)) a.s. for every t, s ∈ I

with s < t.

Example 1.40. 1) LetX be an integrable random variable. Then {E(X | Ft)}t∈I
is a Ft-martingale.

2) Let X(t) be a martingale (resp. submartingale) and f be a convex func-
tion (resp. non-decreasing convex function). Then f(X(t)) is a submartingale.
In particular, X(t)+ and X(t)∨a (∀ a ∈ lR) are submartingales whenever X(t)
is a martingale.

Obviously, X(t) is a martingale if and only if it is both sub- and supper-
martingale. Martingales are a class of important stochastic processes, which
are easily computable and estimable.

First, we consider the discrete time case. In this case, we write X(n) as
Xn, and all stopping times are assumed to be valued in {0, 1, 2, · · · ,∞}.

The following theorem is the basis to show the martingale inequalities in
the sequel.

Theorem 1.41. (Doob Stopping Theorem) Let {Xn}n∈I be a {Fn}n∈I-
martingale (resp. supermartingale, submartingale), σ and τ be two bounded
stopping times with σ ≤ τ , a.s. Then

E(Xτ | Fσ) = Xσ (resp. ≤, ≥) a.s.

Proof. It suffices to consider the case of supermartingale.
Suppose σ ∨ τ ≤M , a.s. We need to show that for every A ∈ Fσ, it holds

∫

A

XσdP ≥
∫

A

XτdP.

Suppose first that σ ≤ τ ≤ σ + 1. Put

Bn = A ∩ (σ = n) ∩ (τ > σ) = A ∩ (σ = n) ∩ (τ > n) ∈ Fn.

It is clear that

A ∩ (τ > σ) =
∞⋃
n=0

Bn.

Therefore
∫

A

(Xσ −Xτ )dP =
∫

A∩(τ≥σ)

(Xσ −Xτ )dP =
∫

A∩(τ>σ)

(Xσ −Xτ )dP

=
∞∑
n=0

∫

Bn

(Xσ −Xτ )dP =
∞∑
n=0

∫

Bn

(Xn −Xn+1)dP ≥ 0.
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In the general case, write

γk = τ ∧ (σ + k), k = 0, 1, 2, · · · ,M.

Then γk are {Fn}-stopping times, and

0 ≤ γj+1 − γj ≤ 1, j = 0, 1, 2, · · · ,M − 1.

Note that γ0 = σ and γM = τ . Thus from the case discussed above,
∫

A

XσdP =
∫

A

Xγ0dP ≥
∫

A

Xγ1dP ≥ · · · ≥
∫

A

XγMdP =
∫

A

XτdP.

Theorem 1.42. (Doob inequality) Let {Xn}n∈I be a submartingale. Then for
every λ > 0 and m ∈ I,

λP ( max
0≤n≤m

Xn ≥ λ) ≤
∫

( max
0≤n≤m

Xn≥λ)

XmdP ≤ E|Xm|,

and
λP ( min

0≤n≤m
Xn ≤ −λ) ≤ E(|X0|+ |Xm|).

Proof. We define a stopping time as follows

σ =
{

min{n ≤ m | Xn ≥ λ},
m, if {n ≤ m | Xn ≥ λ} = ∅.

Obviously, σ ≤ m. Therefore

EXm ≥ EXσ =
∫

( max
0≤n≤m

Xn ≥ λ)
XσdP +

∫

( max
0≤n≤m

Xn < λ)
XσdP

≥ λP ( max
0≤n≤m

Xn ≥ λ) +
∫

( max
0≤n≤m

Xn < λ)
XmdP,

which yields the first inequality.
The second one is obtained from EX0 ≤ EXτ , where

τ =
{

min{n ≤ m | Xn ≤ −λ},
m, if {n ≤ m | Xn ≤ −λ} = ∅.

Corollary 1.43. Let {Xn}n∈I be a martingale such that E|Xn|p < ∞ for
some p ≥ 1 and all n ∈ I. Then, for every m ∈ I and λ > 0,

P ( max
0≤n≤m

|Xn| ≥ λ) ≤ λ−pE|Xm|p,

and if p > 1,
E( max

0≤n≤m
|Xn|p) ≤

( p

p− 1

)p
E|Xm|p.
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Proof. Obviously, {|Xn|p}n∈I is a submartingale and so the first assertion
follows from Theorem 1.42.

As for the second one, we set Y = max
0≤n≤m

|Xn|. Then, by Theorem 1.42,

we have
λP (Y ≥ λ) ≤

∫

(Y≥λ)

|Xm|dP.

Hence,

EY p = p

∫

Ω

dP

∫ Y

0

λp−1dλ = p

∫

Ω

dP

∫ ∞
0

χ(Y≥λ)λ
p−1dλ

= p

∫ ∞
0

λp−1P (Y ≥ λ)dλ ≤ p
∫ ∞

0

λp−2

∫

Ω

χ(Y≥λ)|Xm|dPdλ

= p

∫

Ω

|Xm|
∫ Y

0

λp−2dλdP =
p

p− 1

∫

Ω

|Xm|Y p−1dP.

which yields the desired result.
We now establish Doob’s upcrossing inequality, which is used to derive

convergence results for martingales. For a real {Fn}-adapted process X =
{Xn}n∈I , and an interval [a, b], with −∞ < a < b <∞, we set

τ0 = 0,
τ1 = min{n | Xn ≤ a},
τ2 = min{n ≥ τ1 | Xn ≥ b},
· · ·
τ2k+1 = min{n ≥ τ2k | Xn ≤ a},
τ2k+2 = min{n ≥ τ2k+1 | Xn ≥ b},
· · · .





(1.19)

(min ∅ = +∞ unless otherwise stated). It is clear that {τn} is an increasing
sequence of stopping times. Set

UXm (a, b)(ω)
4
= max{k | τ2k(ω) ≤ m}.

Obviously, UXm (a, b) is the number of upcrossings of {Xn}mn=0 for the interval
[a, b].

Theorem 1.44. Let X = {Xn}n∈I be a submartingale. Then for every m ∈ I
and a < b,

E(UXm (a, b)) ≤ 1
b− a{E[(Xm − a)+ − (X0 − a)+]}.

Proof. Denote Yn = (Xn − a)+ and Y = {Yn}n∈I . Obviously, Y is a
submartingale and UXm (a, b) = UYm(0, b − a). Let τi be defined as in (1.19)
with X, a and b replaced by Y , 0 and b− a, respectively. Set
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τ ′n = τn ∧m.
Then, if 2j > m,

Ym − Y0 =
2j∑
n=1

(Yτ ′n − Yτ ′n−1
) =

j∑
n=1

(Yτ ′2n − Yτ ′2n−1
) +

j−1∑
n=0

(Yτ ′2n+1
− Yτ ′2n).

It is easy to see that the first term in the right-hand side is greater than or
equal to (b−a)UYm(0, b−a). Also, EYτ ′2n+1

≥ EYτ ′2n . These two facts yield the
desired results.

Theorem 1.45. If X = {Xn}n∈I be a submartingale such that

sup
n∈I

EX+
n <∞,

then X∞ = lim
n→∞

Xn exists a.s., and X∞ is integrable. In order that X̂ =

{Xn}n∈Î be a submartingale, i.e.,

Xn ≤ E(Xm | Fn), ∀ 0 ≤ n < m ≤ ∞,
it is necessary and sufficient that {X+

n }n∈I be uniformly integrable.

Proof. Set UX∞(a, b) = lim
m→∞

UXm (a, b). Clearly,

( lim
n→∞

Xn < lim
n→∞

Xn) ⊂
⋃

r,r′∈Q,r<r′
(UX∞(r, r′) =∞).

However, by Theorem 1.44 and noting (Xm − r)+ ≤ X+
m + |r|, we get

E(UX∞(r, r′)) ≤ lim
m→∞

E(UXm (r, r′)) ≤ 1
r′ − r lim

m→∞
E((Xm − r)+ − (X0 − r)+)

≤ 1
r′ − r lim

m→∞
E(X+

m + |r| − (X0 − r)+),

and this limit is finite. Consequently,

P ( lim
n→∞

Xn < lim
n→∞

Xn) = 0,

which proves that lim
n→∞

Xn exists a.s. The integrability of X∞ follows from
Fatou’s lemma.

Now, if Xn ≤ E(X∞ | Fn) for n = 0, 1, 2, · · ·, then by the property of
conditional expectation, we have

X+
n ≤ E(X+

∞ | Fn), a.s.

However, we know that {E(X+
∞ | Fn)}n∈I is uniformly integrable. Therefore,

so is {X+
n }n∈I .
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Conversely, if {X+
n }n∈I is uniformly integrable, then, by

|Xn ∨ (−a)| ≤ a+X+
n , ∀a > 0,

one concludes that {Xn∨(−a)}n∈I is uniformly integrable. Thus, by Theorem
1.37, we see that

lim
n→∞

Xn ∨ (−a) = X∞ ∨ (−a) in L1
F (Ω).

Since {Xn ∨ (−a)}n∈I is a submartingale,

E(X∞ ∨ (−a) | Fn) = lim
m→∞

E(Xm ∨ (−a) | Fn) ≥ Xn ∨ (−a),

and so, letting a→ +∞, one gets E(X∞ | Fn) ≥ Xn.

Theorem 1.46. Let X = {Xn}n∈I be a martingale. Then the following con-
ditions are equivalent.

i) lim
n→∞

Xn = X∞ exists a.s. and in L1
F (Ω);

ii) Xn = E(X∞ | Fn) for all n ∈ I;
iii) {Xn}n∈I is uniformly integrable.

Furthermore, under one of these conditions, X̂ = {Xn}n∈Î is a martingale.

Proof. “i)⇒ii)”. For any m,

E(Xn | Fm) = Xm, ∀ n ≥ m.
Letting n→∞, one gets

Xm = E(X∞ | Fm), a.s.

“ii)⇒iii)”. Obviously.
“iii)⇒i)”. The uniform integrability of {Xn}n∈I implies the boundedness

of {Xn}n∈I in L1
F (Ω) and the uniform integrability of {X+

n }n∈I . Now, the
desired result follows from Theorem 1.45.

We consider, for a moment, martingale with “reversed” time. Let (Ω,F , P )
be a probability space and {Fn}0n=−∞ be a family of sub-σ-fields of F such
that F0 ⊃ F−1 ⊃ F−2 ⊃ · · · ⊃. We say X = {Xn}0n=−∞ to be a martingale
(resp. supermartingale, submartingale) ifXn is Fn-adapted integrable random
variable such that

E(Xn | Fm) = Xm (resp. ≤, ≥)

for every n,m ∈ {0,−1,−2, · · ·} with n > m.

Theorem 1.47. Let X = {Xn}0n=−∞ be a submartingale. Then
i) X−∞ = lim

n→−∞
Xn exists a.s.;

ii) X is uniformly integrable and lim
n→−∞

Xn = X−∞ in L1
F (Ω) provided

that
lim

n→−∞
EXn > −∞.
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Proof. The first assertion can be proved similar to that of Theorem 1.45.
For the second one, it suffices to show the uniform integrability of X. For

this, we fix any ε > 0 and choose k such that

|EXk1 − EXk2 | < ε, ∀ k1, k2 ≤ k.
Then, if n ≤ k and λ > 0,
∫

(|Xn|>λ)

|Xn|dP =
∫

(Xn>λ)

XndP +
∫

(Xn≥−λ)

XndP − EXn

≤
∫

(Xn>λ)

XkdP +
∫

(Xn≥−λ)

XkdP − EXk + ε ≤ 2
∫

(|Xn|>λ)

|Xk|dP + ε.

Also,

P (|Xn| > λ) ≤ 1
λ
E|Xn| = 1

λ
(2EX+

n − EXn) ≤ 1
λ

(2EX+
0 − lim

n→−∞
EXn).

Therefore, we get the uniform integrability of {Xn}0n=−∞.

Now, we consider the continuous time case, i.e., I = [0,∞).

Theorem 1.48. Let X = {X(t)}t∈I be a submartingale. Then, with probabil-
ity 1, Q ∩ I 3 t 7→ X(t) is finite valued and possesses

lim
Q∩I3s→t+

X(s) and lim
Q∩I3s→t−

X(s), ∀ t ≥ 0.

Proof. Let T > 0 be given and {r1, r2, · · ·} be an enumeration of the
set Q ∩ [0, T ]. For every n, if {s1, s2, · · · , sn} is the rearrangement of the set
{r1, r2, · · · , rn} according to the natural order, then

Y0 = X(0), Y1 = X(s1), · · · , Yn = X(sn), Yn+1 = X(T )

defines a submartingale. Therefore, by Theorems 1.42 and 1.44, we get

P ( max
0≤i≤n+1

|Yi| > λ) ≤ 1
λ

[E|X(0)|+ E|X(T )|],

and for any a, b ∈ I with a < b,

E(UYn (a, b)) ≤ 1
b− aE(Yn − a)+ ≤ 1

b− aE(X(T )− a)+.

Since this holds for every n, we have

P ( sup
t∈Q∩[0,T ]

|X(t)| > λ) ≤ 2
λ

[E|X(0)|+ E|X(T )|],

and
E(UX|Q∩[0,T ]∞ (a, b)) ≤ 1

b− aE(X(T )− a)+.

By letting λ and a < b run over respectively positive integers and pairs of
rational, the assertion of the theorem follows.
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Theorem 1.49. Let X = {X(t)}t∈I be a submartingale. Then the following
assertions hold:

i) X̃(t)
4
= lim
Q∩I3r→t+

X(r) exists a.s. and X̃ = {X̃(t)}t∈I is a submartingale

such that t 7→ X̃(t) is right-continuous with left-hand limits a.s.;
ii) X(t) ≤ X̃(t) a.s., ∀ t ∈ I;
iii) P (X(t) = X̃(t)) = 1 for every t ∈ I if and only if EX(t) is right-

continuous with respect to t.

Proof. i) The well-definedness of X̃(t) is shown in Theorem 1.48. It is easy
to see that X̃(t) is {Ft}-adapted.

To prove {X̃(t)}t∈I is a submartingale, fix any s > t. We choose arbitrarily
a sequence {εn} decreasing to 0 so that t+εn ∈ Q for all n. Then, by Theorem
1.47, we see that

lim
n→∞

|X(t+ εn)− X̃(t)|L1
F (Ω) = 0.

Similarly, we choose a sequence {ε′n} decreasing to 0 such that s+ ε′n ∈ Q for
all n. Then

lim
n→∞

|X(s+ ε′n)− X̃(s)|L1
F (Ω) = 0.

Hence, for any B ∈ Ft,
∫

B

X̃(t)dP = lim
n→∞

∫

B

X(t+ εn)dP ≤ lim
n→∞

∫

B

X(s+ ε′n)dP =
∫

B

X̃(s)dP.

This implies that {X̃(t)}t∈I is a submartingale.
Now, using Theorem 1.48 again, we see that, with probability 1, for any

t0 ∈ I and ε > 0, there is a δ > 0 such that for any s ∈ (t0, t0 + δ) ∩Q,

|X̃(t0)−X(s)| < ε.

Therefore, for any r ∈ (t0, t0 + δ),

|X̃(t0)− X̃(r)| = lim
Q3s→r+

|X̃(t0)−X(s)| ≤ ε.

Hence,
lim

r→t0+
X̃(r) = X̃(t0).

This yields the right-continuity of X̃(t).
To show the existence of lim

t→t0−
X̃(t), we use Theorem 1.48 again to con-

clude that
lim

Q3t→t0−
X̃(t) exists a.s.

Thus, for any ε > 0, there is a δ > 0 such that

|X̃(t1)− X̃(t2)| < ε, ∀ t1, t2 ∈ (t0 − δ, t0) ∩Q.
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By the right-continuity of X̃(t), the above inequality can be strengthened as

|X̃(t1)− X̃(t2)| < ε, ∀ t1, t2 ∈ (t0 − δ, t0),

which implies the existence of the desired left limit.
ii) It is easy to see that

∫

B

X(t)dP ≤
∫

B

X̃(t)dP, ∀ B ∈ Ft

and hence X(t) ≤ X̃(t) a.s.
iii) The “if” part. By the right-continuity of EX(t), we get

EX(t) = lim
Q3s→t+

EX(s) = EX̃(t).

Note that, X̃(t) ≥ X(t). Hence P (X̃(t) = X(t)) = 1.
The “only if” part. Choose any sequence {sn} decreasing to t. Then, by

the proof of Theorem 1.48, we see that, with probability 1.

lim
sn→t+

X(sn) = lim
Q3s→t+

X(s) = X̃(t), ∀ t ≥ 0.

Thus,
lim

sn→t+
EX(sn) = EX̃(t) = EX(t).

X̃ = {X̃(t)}t∈I in Theorem 1.49 is called the right-continuous modification
of X. It is easy to see that when X(·) is a martingale, we may assume that
X(·) itself is right-continuous.

Theorem 1.50. If X = {X(t)}t∈I is a right-continuous martingale so that
E|X(t)|p <∞ for some p ≥ 1, then for each T > 0,

P ( sup
t∈[0,T ]

|X(t)| > λ) ≤ λ−pE|X(T )|p, p ≥ 1,

E( sup
t∈[0,T ]

|X(t)|p) ≤
( p

p− 1

)p
E|X(T )|p, p > 1.

Theorem 1.51. Let X = {X(t)}t∈I be a right-continuous submartingale so
that

sup
t∈I

EX(t)+ <∞.

Then:
i) lim

t→∞
X(t) = X∞ a.s., X∞ ∈ L1

F (Ω);

ii) If {X(t)+}t∈I is uniformly integrable, then X̂ = {X(t)}t∈Î is a sub-
martingale;

iii) If {X(t)}t∈I is uniformly integrable, then

lim
t→∞

X(t) = X∞ in L1
F (Ω).
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Theorem 1.52. Let X = {X(t)}t∈I be a martingale. Then the following con-
ditions are equivalent:

i) lim
t→∞

X(t) = X∞ in L1
F (Ω);

ii) X(t) = E(X∞ | Ft) a.s., ∀ t ∈ I;
iii) {X(t)}t∈I is uniformly integrable.

Furthermore, under one of these conditions, X̂ = {X(t)}t∈Î is a martingale.

Theorem 1.53. (Doob stopping theorem) Let X = {X(t)}t∈I be a right-
continuous {Ft}t∈I-submartingale, σ and τ be two bounded {Ft}t∈I-stopping
times such that

P (σ ≤ τ) = 1.

Then X(σ) and X(τ) are integrable, and

E(X(τ) | Fσ) ≥ Xσ, a.s.

Proof. Since σ and τ are bounded, one can find a positive integer N such
that σ ∨ τ ≤ N . Put

σn =
2nN∑

k=1

k

2n
χ( k−1

2n ≤σ< k
2n ), τn =

2nN∑

k=1

k

2n
χ( k−1

2n ≤τ< k
2n ).

Then
σn ≤ τn ≤ N, a.s.

Therefore, by Theorem 1.41, we see that

E(X(τn) | Fσn) ≥ X(σn), a.s.

Hence, for any A ∈ Fσ, we have
∫

A

X(τn)dP ≥
∫

A

X(σn)dP, ∀ n.

Hence, by Theorem 1.47, we get

lim
n→∞

X(τn) = X(τ), lim
n→∞

X(σn) = X(σ), in L1
F (Ω).

Hence, ∫

A

X(τ)dP ≥
∫

A

X(σ)dP,

which gives the desired result.

Corollary 1.54. Let X = {X(t)}t∈I be a right-continuous {Ft}t∈I-
submartingale and {σt}t∈I be a family of bounded stopping times such that
P (σt ≤ σs) = 1 when t < s. Set

X(t) = X(σt), F t = Fσt , ∀ t ∈ I.
Then X = {X(t)}t∈I be a right-continuous {F t}t∈I-submartingale.
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Corollary 1.55. Let X = {X(t)}t∈I be a {Ft}t∈I-martingale, and σ ≤ τ be
two stopping times. Then

E(X(t ∧ τ)−X(t ∧ σ) | Fσ) = 0, ∀ t ≥ 0.

Proof. By Proposition 1.34, X(t∧τ) is Ft-measurable. Hence, by Corollary
1.54,

X(t∧σ) = E(X(t∧τ) | Ft∧σ) = E(E(X(t∧τ) | Ft) | Fσ) = E(X(t∧τ) | Fσ).





2

Stochastic Integrals

2.1 Itô’s integrals

Let W = {W (t)}t≥0 be a (Ft)-Brownian motion. Since with probability 1, the
function t → W (t) is nowhere differentiable, the integral

∫ t
0
f(s, ω)dW (s, ω)

can not be defined piontwisely. However, one can define the integral for a large
class of processes by means of the martingale property of Brownian motion.
This was first done by K. Itô and is now known as Itô’s integral.

We first introduce the function space consisting of all possible integrands.
Let (Ω,F , {Ft}t≥0, P ) be a fixed filtered probability space satisfying the usual
condition. Let T > 0 and recall that L2

F (0, T ) is the set of all measurable
processes f(t) adapted to {Ft}t≥0, such that

|f |2L2
F (0,T )

∆=E

∫ T

0

|f(t)|2dt <∞.

It is seen that L2
F (0, T ) is a Hilbert space.

As one done for the Legesgue integral, we will first define the Itô’s integral
for simple integrands. This leads to the definition of the following space.

Let L0 be the sub-collection of those processes f = f(t) ∈ L2
F (0, T ) of the

form (called simple processes):

f(t, ω) = f0(ω)χ{0}(t) +
n∑

j=0

fj(ω)χ(tj ,tj+1](t), (t, ω) ∈ [0, T ]×Ω, (2.1)

where 0 = t0 < t1 < · · · < tn = T , fj is Ftj -measurable with sup
j, ω
|fj(ω)| <∞.

We need the following basic result. We will omit its proof since it is quite
technical.

Lemma 2.1. L0 is dense in L2
F (0, T ).
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Next, we introduce the following sets that are related to the integrals we
are going to define:





M2[0, T ] = {X ∈ L2
F (0, T )

∣∣ X is a right-continuous
{Ft}t≥0-martingale with X(0) = 0, P -a.s.},

M2
c [0, T ] = {X ∈M2[0, T ]

∣∣ t 7→ X(t) is continuous, P -a.s.}.

We identify X,Y ∈M2[0, T ] if there exists a set N ∈ F with P (N) = 0, such
that X(t, ω) = Y (t, ω), for all t ≥ 0 and ω /∈ N . Define

|X|M2[0,T ] =
√
E|X(T )|2, ∀X ∈M2[0, T ].

Lemma 2.2. (M2[0, T ], |·|M2[0,T ]) is a Hilbert space, andM2
c [0, T ] is a closed

subspace of M2[0, T ].

Proof. First we note that if |X−Y |M2[0,T ] = 0, then X = Y . Indeed, |X−
Y |M2[0,T ] = 0 implies X(T ) = Y (T ) a.s. Therefore, X(t) = E(X(T )|Ft) =
E(Y (T )|Ft) = Y (T ) for t ≤ T . By the right-continuity of X(t) and Y (t), we
conclude that X = Y .

Next, let {Xn}∞n=1 be a Cauchy sequence in M2[0, T ], i.e., lim
n,m→∞

|Xn −
Xm|M2[0,T ] = 0. Then, by the second assertion in Theorem 1.50, we conclude
that

E

(
sup

0≤t≤T
|Xn(t)−Xm(t)|

)
≤ 4E|Xn(T )−Xm(T )|2.

Hence, there is a X = {X(t)} such that E|Xn(t) − X(t)| → 0 as n → ∞
uniformly for t ∈ [0, T ], and we see from this that X ∈M2[0, T ] and |Xn(t)−
X(t)|M2[0,T ] → 0 as n→∞.

Finally, it is also clear from this proof that if Xn ∈ M2
c [0, T ], then X ∈

M2
c [0, T ].

We shall now define the Itô’s integral as a mapping

f ∈ L2
F (0, T ) 7→ I(f) ∈M2

c [0, T ]. (2.2)

First, assume f ∈ L0 and taking the form of (2.1). Then we set

I(f)(t, ω) =
n∑

j=0

fj(ω)[W (t ∧ tj+1, ω)−W (t ∧ tj , ω)]. (2.3)

We have the following key result.

Proposition 2.3. Let f ∈ L0. Then
(i) I(f) ∈M2

c [0, T ].
(ii) |I(f)|M2[0,T ] = |f |L2

F (0,T ).

(iii)
(
I(f)(t)

)2 − ∫ t
0
f2(s)ds is a (Ft)-martingale.
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Next, let f ∈ L2
F (0, T ). Then, by Lemma 2.1, we can find a sequence of

{fk} ⊂ L0 such that |fk−f |L2
F (0,T ) → as k →∞. Since |I(fk)−I(fj)|M2[0,T ] =

|fk − fj |L2
F (0,T ), one deduces that {I(fk)} is a Cauchy sequence in M2[0, T ]

and therefore, by Lemma 2.2, it converges to a unique element X ∈M2[0, T ].
Clearly, X is determined uniquely from f and is independent of the par-
ticular choice of {fk}. This process is called the Itô’s stochastic integral of
f ∈ L2

F (0, T ) with respect to the Brownian Motion W (·). We shall denote it
by

∫ t

0

f(s, ω)dW (s, ω) or simply
∫ t

0

f(s)dW (s) or even
∫ t

0

fdW.

Further, for any f ∈ L2
F (0, T ) and any two stopping times σ and τ with

0 ≤ σ ≤ τ ≤ T , P -a.s., we define
∫ τ

σ

f(s)dW (s) ∆=
∫ τ

0

f(s)dW (s)−
∫ σ

0

f(s)dW (s).

The stochastic integral with respect to a {Ft}-Brownian Motion W (·) has
the properties:

Theorem 2.4. Let f, g ∈ L2
F (0, T ), a, b ∈ lR, T ≥ t > s ≥ 0, and σ and τ be

{Ft}-stopping times such that τ ≥ σ a.s.. Then
(i) ∫ t

0

(af + bg)dW = a

∫ t

0

fdW + b

∫ t

0

gdW, a.s. (2.4)

(ii)

E
(∫ t

s

fdW | Fs
)

= 0, a.s., (2.5)

and

E
(∣∣∣
∫ t

s

fdW
∣∣∣
2

| Fs
)

= E
(∫ t

s

|f(u, ω)|2du | Fs
)
, a.s. (2.6)

More generally,

E
(∫ t∧τ

t∧σ
fdW | Fs

)
= 0, a.s., (2.7)

and

E
(∣∣∣
∫ t∧τ

t∧σ
fdW

∣∣∣
2

| Fσ
)

= E
(∫ t∧τ

t∧σ
|f(u, ω)|2du | Fσ

)
, a.s. (2.8)

(iii)

E
(∫ t

s

fdW

∫ t

s

gdW | Fs
)

= E
(∫ t

s

f(u, ω)g(u, ω)du | Fs
)
, a.s. (2.9)

and
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E
(∫ t∧τ

t∧σ
fdW

∫ t∧τ

t∧σ
gdW | Fσ

)
= E

(∫ t∧τ

t∧σ
f(u, ω)g(u, ω)du | Fσ

)
, a.s.

(2.10)
(iv) ∫ t∧σ

0

fdW =
∫ t

0

f(s)χ[0,σ](s)dW (s), a.s. (2.11)

Proof. We only prove (iv). First consider the case when f ∈ L0. Assume

f ≡ f(t, ω) = f0(ω)χ{0}(t) +
n∑

j=0

fj(ω)χ(tj ,tj+1](t).

Let {sni }k(n)
i=0 (n = 1, 2, · · ·) be a refinement of {ti}ni=0 ∪ {iT2−n}2ni=0 according

to the natural order. Then f may be re-written as

f = f0(ω)χ{0}(t) +
k(n)∑

j=0

fnj (ω)χ(sn
j
,sn
j+1](t), n = 1, 2, · · · .

Define

σn(ω) =
k(n)∑

j=0

snj+1χ(sn
j
,sn
j+1](σ).

Then, for each t ≥ 0,

{σn ≤ t} =
⋃

sn
j+1≤t, 0≤j≤k(n)

(σ ≤ snj+1) ∈ Ft.

Hence, σn is a {Ft}-stopping time, and σn ↓ σ as n→∞. It is easy to show
that

fχ[0,σn](t) = f0(ω)χ{0}(t) +
k(n)∑

j=0

(
fnj (ω)χ(sn

j
,∞)(σ)

)
χ(sn

j
,sn
j+1](t) ∈ L0.

Hence,

∫ t

0

fχ[0,σn](u)dW (u)=
k(n)∑

j=0

(
fnj (ω)χ(sn

j
,∞)(σ)

)
(W (t ∧ snj+1)−W (t ∧ snj ))

=
k(n)∑

j=0

(
fnj (ω)χ(σ>sn

j
)

)
(W (t ∧ σn ∧ snj+1)−W (t ∧ σn ∧ snj ))

=
k(n)∑

j=0

fnj (ω)(W (t ∧ σn ∧ snj+1)−W (t ∧ σn ∧ snj ))

=
∫ t∧σn

0

fdW.
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Thus,

lim
n→∞

∫ t

0

fχ[0,σn](u)dW (u) =
∫ t∧σ

0

fdW.

On the other hand, it is clear that, for every t > 0,

E

∣∣∣∣
∫ t

0

fχ[0,σn](u)dW (u)−
∫ t

0

fχ[0,σ](u)dW (u)
∣∣∣∣
2

= E

∫ t

0

|f |2χ[σ,σn](u)du→ 0,

as n→∞. Hence,
∫ t

0

fχ[0,σn](u)dW (u)→
∫ t

0

fχ[0,σ](u)dW (u) in M1
c [0, T ].

Consequently, ∫ t

0

fχ[0,σ](u)dW (u) =
∫ t∧σ

0

fdW.

The general case can be proved by approximating f by a sequence of
{fn} ⊂ L0.

Now, let W (t) = (W 1(t),W 2(t), · · · ,Wn(t)) be an n-dimensional {Ft}-
Brownian Motion and let f1, f2, · · · , fn ∈ L2

F (0, T ). Then one may define the
stochastic integral

∫ t
0
fkdW

k for each k = 1, 2, · · · , n.

Proposition 2.5. For t > s ≥ 0 and k, j = 1, 2, · · · , n,

E
(∫ t

s

fkdW
k

∫ t

s

fjdW
j
∣∣∣ Fs

)
= δkjE

(∫ t

s

fkfjdu
∣∣∣ Fs

)
.

More generally, for any m × n-process f ∈ L2
F (0, T ; lRn×m) and n-

dimensional {Ft}-Brownian Motion W (t), one may define the Itô’s integral∫ T
0
fdW .
We now extend the Itô integral to a bigger class of integrands than

L2
F (0, T ). To this end, for each p ≥ 1, we introduce

Lp,locF (0, T ) = {X : [0, T ]×Ω → lR
∣∣ X(·) is {Ft}t≥0-adapted

and
∫ T

0

|X(t)|pdt <∞, P -a.s.},

and




M2,loc[0, T ] = {X : [0, T ]×Ω → lR
∣∣ ∃ nondecreasing

stopping times σj with P ( lim
j→∞

σj ≥ T ) = 1,

and X(· ∧ σj) ∈M2[0, T ], ∀j = 1, 2, · · ·},
M2,loc

c [0, T ] = {X ∈M2,loc[0, T ]
∣∣ t 7→ X(t) is continuous,P -a.s.}.
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Any element in M2,loc[0, T ] (resp. M2,loc
c [0, T ]) is called a local square inte-

grable (resp. continuous local square integrable) {Ft}-martingale.
For any f(·) ∈ L2,loc

F (0, T ), define

σj(ω) ∆= inf
{
t ∈ [0, T ]

∣∣∣
∫ t

0

|f(s)|2ds ≥ j
}
, j = 1, 2, · · · .

In the above, we define inf ∅ ∆=T . Clearly, {σj}j≥1 is a sequence of nondecreas-

ing stopping times satisfying P ( lim
j→∞

σj ≥ T ) = 1. Set fj(t)
∆= f(t)χ[0,σj ](t).

Then ∫ T

0

|fj(s)|2ds =
∫ σj

0

|f(s)|2ds ≤ j,

which implies fj(·) ∈ L2
F (0, T ). By (2.11), we have

∫ t∧σi

0

fj(s)dW (s) =
∫ t

0

fj(s)χ[0,σi](s)dW (s)

=
∫ t

0

f(s)χ[0,σj ](s)χ[0,σi](s)dW (s) =
∫ t

0

fi(s)dW (s), ∀i ≤ j.

Hence, the following is well-defined:
∫ t

0

f(s)dW (s) ∆=
∫ t

0

fj(s)dW (s), ∀ t ∈ [0, σj ], j = 1, 2, · · · .

This is called the Itô integral of f(·) ∈ L2,loc
F (0, T ). It is easy to see that∫ t

0
f(s)dW (s) ∈M2,loc

c [0, T ] for any f(·) ∈ L2,loc
F (0, T ).

We point out that for f(·) ∈ L2,loc
F (0, T ), (2.5)–(2.10) do not hold in gen-

eral, but (2.4) and (2.11) remain true. We list as follows some basic properties
of the Itô’s integral of L2,loc

F (0, T )-processes.

Theorem 2.6. Let f, g ∈ L2,loc
F (0, T ). Then

(i) For any {Ft}-stopping time σ, it holds

∫ t∧σ

0

fdW =
∫ t

0

fχ[0,σ](s)dW (s);

(ii) For any Ω0 ⊂ Ω and {Ft}-stopping time σ, if f = 0 in A
4
= {(t, ω) ∈

[0, T ]×Ω0 | t ≤ σ(ω)}, then

∫ t

0

fdW = 0, in A;

(iii) For any ε > 0 and δ > 0, it holds
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P
(

sup
s∈[0,t]

∣∣∣
∫ s

0

fdW
∣∣∣ ≥ ε

)
≤ P

(∫ t

0

|f(u)|2du ≥ δ
)

+
δ

ε2
.

Hence, if fn, f ∈ L2,loc
F (0, T ), and
∫ t

0

|fn(u)− f(u)|2du→ 0, in P,

then
sup
s∈[0,t]

∣∣∣
∫ s

0

fndW −
∫ s

0

fdW
∣∣∣→ 0, in P ;

(iv) For any bounded {Ft}-stopping times τ and σ with τ ≤ σ a.s., and
any bounded Fτ -measurable random variable ξ1 and ξ2, it holds

∫ σ

τ

(ξ1f + ξ2g)dW = ξ1

∫ σ

τ

fdW + ξ2

∫ σ

τ

gdW.

Proof. We only prove (iii). Choose fδ(s) = f(s)χB(s) ∈ L2
F (0, T ), where

B =
{
s ∈ [0, T ]

∣∣∣
∫ s

0

|f(u)|2du ≤ δ
}
.

Then, thanks to Doob’s inequality, we have

P
(

sup
s∈[0,t]

∣∣∣
∫ s

0

fdW
∣∣∣ ≥ ε

)

≤ P
(

sup
s∈[0,t]

∣∣∣
∫ s

0

(f − fδ)dW
∣∣∣ ≥ ε

)
+ P

(
sup
s∈[0,t]

∣∣∣
∫ s

0

fδdW
∣∣∣ ≥ ε

)

≤ P
(∫ t

0

|f(u)|2du ≥ δ
)

+ ε−2E
(∫ t

0

fδdW
)2

= P
(∫ t

0

|f(u)|2du ≥ δ
)

+ ε−2E

∫ t

0

|fδ(u)|2du

≤ P
(∫ t

0

|f(u)|2du ≥ δ
)

+
δ

ε2
.

To conclude this subsection, we present an important result called the
Burkholder-Davis-Gundy inequality.

Theorem 2.7. Let (Ω,F , {Ft}t≥0, P ) be given as before and W (t) be an m-
dimensional standard Brownian motion. Let σ ∈ L2,loc

F (0, T ; lRn×m). Then,
for any r > 0, there exists a constant Kr > 0 such that for any stopping time
τ ,

1
Kr

E
{∫ τ

0

|σ(s)|2ds
}r
≤ E

{
sup

0≤t≤τ

∣∣∣
∫ t

0

σ(s)dW (s)
∣∣∣
2r}

≤ KrE
{∫ τ

0

|σ(s)|2ds
}r
.
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2.2 Itô’s formula

In this subsection, we present a stochastic version of the chain rule or change-
of-variable formula, called Itô’s formula/lemma/rule, which plays one of the
most important roles in stochastic calculus.

Definition 2.8. For any b(·) ∈ L1,loc
F (0, T ) and σ(·) ∈ L2,loc

F (0, T ), {Ft}-
adapted process X(·) of the form

X(t) = X(0) +
∫ t

0

b(s)ds+
∫ t

0

σ(s)dW (s), t ∈ [0, T ], (2.12)

is called an Itô process.

Theorem 2.9. (Itô’s formula) Let (Ω,F , {Ft}t≥0, P ) be a filtered probabil-
ity space satisfying the usual condition, W (t) be a 1-dimensional {Ft}t≥0-
Brownian motion, b(·) ∈ L1,loc

F (0, T ), σ ∈ L2,loc
F (0, T ), and X(·) be given by

(2.12). Let F (t, x) : [0, T ] × lR → lR be C1 in t and C2 in x with Ft, Fx and
Fxx being continuous such that





Ft(·, X(·)), Fx(·, X(·))b(·) ∈ L1,loc
F (0, T ),

Fxx(·, X(·))(σ(·))2 ∈ L1,loc
F (0, T ; lR),

Fx(·, X(·))σ(·) ∈ L2,loc
F (0, T ).

Then

F (t,X(t)) = F (0, X(0)) +
∫ t

0

{
Fs(s,X(s)) + Fx(s,X(s))b(s)

+
1
2
Fxx(s,X(s))(σ(s))2

}
ds

+
∫ t

0

Fx(s,X(s))σ(s)dW (s), ∀ t ∈ [0, T ], P -a.s.

(2.13)

Proof. The main idea is to use the Taylor’s formula. We fix any t ∈ [0, T ].
Step 1. We claim that, it suffices to prove (2.13) under the additional

assumptions that X(s),
∫ s

0
σdW ,

∫ s
0
|σ(u)|2du and

∫ s
0
|b(u)|du are uniformly

bounded in [0, t]×Ω.
Indeed, for the general case, we set

τn
4
= inf

{
u ≥ 0

∣∣∣∣
∣∣∣
∫ u

0

σdW
∣∣∣ ∨
∣∣∣
∫ u

0

|σ(s)|2ds
∣∣∣ ∨
∣∣∣
∫ u

0

|b(s)|ds
∣∣∣ ≥ n

}
,

(inf ∅ = t). It is easy to see that {τn}∞n=1 is a sequence of {Ft}-stopping times.
Put

Xn(t)
4
= Xn(0) +

∫ t

0

σndW +
∫ t

0

bnds,
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where

Xn(0) = X(0)χ(|X(0)|≤n), σn(s) = σ(s)χ[0,τn](s), bn(s) = b(s)χ[0,τn](s).

Hence,Xn(0),
∫ t

0
σndW ,

∫ t
0
|σn(s)|2ds and

∫ t
0
|bn(s)|ds are uniformly bounded.

If the Itô’s formula (2.13) holds for Xn, then we have

F (t,Xn(t)) = F (0, Xn(0)) +
∫ t

0

{
Fs(s,Xn(s)) + Fx(s,Xn(s))bn(s)

+
1
2
Fxx(s,Xn(s))(σn(s))2

}
ds

+
∫ t

0

Fx(s,Xn(s))σn(s)dW (s), P -a.s.

(2.14)

Clearly,

F (t,Xn(t))→ F (t,X(t)), F (0, Xn(0))→ F (0, X(0)), a.s. as n→∞.
Now, for any fixed ω ∈ Ω, Fx(s,X(s)) is continuous with respect to s ∈

[0, t] and therefore it is bounded by a constant C. Hence

|Fx(s,Xn(s))σn(s)− Fx(s,X(s))σ(s)|2 ≤ C|σ(s)|2 ∈ L1,loc
F (0, T ).

Hence,
∫ t

0

|Fx(s,Xn(s))σn(s)− Fx(s,X(s))σ(s)|2ds→ 0, a.s. as n→∞.

Thus, by Theorem 2.6 (iii), we conclude that
∫ t

0

Fx(s,Xn(s))σn(s)dW (s)→
∫ t

0

Fx(s,X(s))σ(s)dW (s), a.s. as n→∞.

Similarly,
∫ t

0

|Fx(s,Xn(s))bn(s)− Fx(s,X(s))b(s)|ds, a.s. as n→∞.

Also, using the boundedness for fixed ω, we get
∫ t

0

{
Fs(s,Xn(s)) +

1
2
Fxx(s,Xn(s))(σn(s))2

}
ds

→
∫ t

0

{
Fs(s,X(s)) +

1
2
Fxx(s,X(s))(σ(s))2

}
ds, a.s. as n→∞.

Now, letting n→∞ in (2.14), one gets (2.13).
Step 2. Now, let us show (2.13) under the additional conditions that X(s),∫ s

0
σdW ,

∫ s
0
|σ(u)|2du and

∫ s
0
|b(u)|du are uniformly bounded in [0, t]×Ω by
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some constant K. Denote the upper bound of Ft(t, x), Fx(t, x) and Fxx(t, x)

over A
4
= [0, t]× [−K,K] by C.

Using the Taylor’s expansion, we see that there ia a function ε(s), decreas-
ing to 0 as s→ 0, such that

|F (s, x2)− F (s, x1)− Fx(s, x1)(x2 − x1)− 1
2Fxx(x1, s)(x2 − x1)2|

≤ ε(|x2 − x1|)(x2 − x1)2, ∀ (s, x1), (s, x2) ∈ A,
and

|F (s2, x)− F (s1, x)− Fs(s1, x)(s2 − s1)|
≤ ε(|s2 − s1|)(s2 − s1), ∀ (s1, x), (s2, x) ∈ A.

Step 3. For any h > 0 and k = 0, 1, 2 · · ·, put




τ0 = 0,

τ̂k+1 = inf
{
u ∈ [τk, t]

∣∣∣∣
∣∣∣
∫ u

τk

σdW
∣∣∣ ∨
∫ u

τ

|b(s)|ds ∨
∫ u

τ

|σ(s)|2ds ≥ h
}
,

τk+1 = τ̂k+1 ∧ (τk + h) ∧ t.

(Convention: inf ∅ = t). One can show that {τk} is a sequence of {Ft}-stopping
times, and

τk ≤ τk+1 ≤ τk + h,
∣∣∣
∫ τk+1

τk

σdW
∣∣∣ ≤ h,

∫ τk+1

τk

|b(s)|ds ≤ h.

It is easy to see that

I
4
= F (t,X(t))− F (0, X(0))

=
∑

k

[F (τk+1, X(τk+1))− F (τk, X(τk+1))]

+
∑

k

[F (τk, X(τk+1))− F (τk, X(τk))].

Put
Ih =

∑

k

[
Fs(τk, X(τk+1))∆τk + Fx(τk, X(τk))∆X(τk)

+
1
2
Fxx(τk, X(τk))(∆X(τk))2

]
.

Then

|I − Ih| ≤
∑

k

[
ε(h)|∆τk|+ ε(2h)(∆X(τk))2

]

≤ ε(2h)
{
t+ 2

∑

k

[( ∫ τk+1

τk

σdW
)2

+
∣∣∣
∫ τk+1

τk

b(u)du
∣∣∣
2]}

.

Note that
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∑

k

(∫ τk+1

τk

σdW
)2

=
∑

k

∫ τk+1

τk

|σ(s)|2ds = E

∫ t

0

|σ(s)|2ds.

Hence,

ε(2h)
∑

k

(∫ τk+1

τk

σdW
)2

→ 0 in P as h→ .

On the other hand,

∑

k

∣∣∣
∫ τk+1

τk

b(u)du
∣∣∣
2

≤ h
∑

k

∫ τk+1

τk

|b(u)|du ≤ h
∫ t

0

|b(u)|du.

Hence,
|Ih − I| → 0 in P as h→ .

In what follows, we will analyze the limit of Ih in probability as h→ 0.
Step 4. Clearly, the first term in Ih tends t0

∫ t
0
Fs(s,X(s))ds a.s. as h→ 0.

Recalling that

∆X(τk) =
∫ τk+1

τk

σdW +
∫ τk+1

τk

b(u)du.

Hence, the second term in Ih can be split into two terms. The last term tends
to
∫ t

0
Fx(s,X(s))b(s)ds a.s. as h→ 0; while the previous term reads

∑

k

Fx(τk, X(τk))
∫ τk+1

τk

σdW =
∑

k

∫ τk+1

τk

Fx(τk, X(τx))σ(s)dW (s)

=
∫ t

0

∑

k

Fx(τk, X(τx))χ(τk,τk+1](s)σ(s)dW (s).

However, it follows from the dominated convergence theorem that

E

∫ t

0

∣∣∣
∑

k

Fx(τk, X(τk))χ(τk,τk+1](s)− Fx(s,X(s))
∣∣∣
2

|σ(s)|2ds→ 0

as h→ 0. Hence,

∑

k

Fx(τk, X(τk))
∫ τk+1

τk

σdW →
∫ t

0

Fx(s,X(s))dW (s)

in M2
c [0, t] as h→ 0.

Similarly, by

∣∣∣∆X(τk)
∣∣∣
2

=
∣∣∣
∫ τk+1

τk

σdW
∣∣∣
2

+ 2
∫ τk+1

τk

σdW

∫ τk+1

τk

b(u)du+
∣∣∣
∫ τk+1

τk

b(u)du
∣∣∣
2

,
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we see that the third term in Ih can be split into three terms. The last two
terms tends to 0 as h→ 0; while the first one reads

1
2

∑

k

Fxx(τk, X(τk))
∣∣∣
∫ τk+1

τk

σdW
∣∣∣
2

=
1
2

∑

k

Fxx(τk, X(τk))
∫ τk+1

τk

|σ(s)|2ds

+
1
2

∑

k

Fxx(τk, X(τk))
[∣∣∣
∫ τk+1

τk

σdW
∣∣∣
2

−
∫ τk+1

τk

|σ(s)|2ds
]

≡ I1 + I2.

Obviously, I1 tends to 1
2

∫ t
0
Fxx(τk, X(τk))|σ(s)|2ds a.s. as h→ 0.

However,

E(I2)2 ≤ C2

4

∑

k

[∣∣∣
∫ τk+1

τk

σdW
∣∣∣
2

−
∫ τk+1

τk

|σ(s)|2ds
]2

≤ C2

2

∑

k

[∣∣∣
∫ τk+1

τk

σdW
∣∣∣
4

+
(∫ τk+1

τk

|σ(s)|2ds
)2]

≤ C2h

2

(
hE
∣∣∣
∫ t

0

σdW
∣∣∣
2

+ E

∫ t

0

|σ(s)|2ds
)
→ 0, as h→ 0.

Hence, lim
h→0

I2 = 0 in probability.

Combining the above analysis, we conclude that

Ih →
∫ t

0

{
Fs(s,Xn(s)) + Fx(s,Xn(s))bn(s) +

1
2
Fxx(s,Xn(s))(σn(s))2

}
ds

+
∫ t

0

Fx(s,Xn(s))σn(s)dW (s)

in probability as h→ 0, which gives the desired result.

Finally, let us make an observation. Take σ(·) ∈ L2
F (0, T ) and consider

X(t) =
∫ t

0

σ(s)dW (s), t ∈ [0, T ].

Then X(·) ∈M2
c [0, T ]. By Itô’s formula above, we have

X(t)2 =
∫ t

0

σ(s)2ds+ 2
∫ t

0

X(s)σ(s)dW (s), t ∈ [0, T ].

Note that X(·)σ(·) is in L2,loc
F (0, T ), but not necessarily in L2

F (0, T ). Hence,
the introduction of Itô’s integral for integrands in L2,loc

F (0, T ) is not just some
routine generalization. It is really necessary even for as simple calculus as the
above.
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Stochastic Ordinal Differential Equations

3.1 Stochastic differential equations

We denote Wm 4
= C([0,∞); lRm). Clearly, Wm is a Fréchet space with the

usual topology. Define

Wm
t
4
=
{
ζ(· ∧ t)

∣∣∣ ζ(·) ∈Wm
}
, ∀ t ∈ [0,∞).

Obviously, Wm
t is a closed subspace of Wm. Further, Wm

t is a Banach space
with the inherent topology.

Denote by B(Wm) and B(Wm
t ) respectively the Borel σ-fields of Wm and

Wm
t . It is easy ro see that B(Wm

t ) is not a σ-field on Wm since Wm 6∈ B(Wm
t ).

Define

Bt(Wm)
4
= σ(Wm,B(Wm

t )), Bt+(Wm)
4
=
⋂
s>t

Bs(Wm), ∀ t ∈ [0,∞).

Obviously, both the following are filtered measurable spaces:

(Wm,B(Wm), {Bt(Wm)}t≥0), (Wm,B(Wm), {Bt+(Wm)}t≥0).

For any topology space U , we denote by Am(U) the set of the all
{Bt+(Wm)}t≥0-progressively measurable processes η : [0,∞)×Wm → U .

We need the following technical result:

Lemma 3.1. Let b ∈ Am(lRn) and (Ω,F , {Ft}t≥0, P ) be given, and X be a
continuous lRn-valued {Ft}t≥0-adapted process. Then the process t 7→ b(t,X)
is {Ft}t≥0 adapted.

Now, for any given b ∈ An(lRn) and σ ∈ An(lRn×m), we consider the
following equation:

{
dX(t) = b(t,X)dt+ σ(t,X)dW (t), t ≥ 0,
X(0) = ξ.

(3.1)
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Here, X is the unknown, ξ, the initial datum, is a F0-measurable lRn-valued
function. Such an equation is called a stochastic differential equation.

To begin with, as for ordinal differential equations, one needs to define the
solution to (3.1). The following definition is the most natural one.

Definition 3.2. An {Ft}t≥0-adapted continuous process {X(t)}t≥0 is called
a solution to (3.1) if

(i)
X(0) = ξ, P − a.s., (3.2)

(ii) for each t ≥ 0,
∫ t

0

[|b(s,X)|+ |σ(s,X)|2]ds <∞, P − a.s., (3.3)

(iii) for each t ≥ 0,

X(t) = X(0) +
∫ t

0

b(s,X)ds+
∫ t

0

σ(s,X)dW (s), P − a.s. (3.4)

If for any other solution Y to (3.1), it holds

P (X(t) = Y (t), t ≥ 0) = 1,

then we say that the solution of (3.1) is unique.

We mention that there are some other definition for solution to (3.1).
In (3.4), the first integral on the right is the usual Lebesgue integral and the

second one is the Itô’s integral. Clearly, if (3.3) holds, then these two integrals
are well-defined. In the sequel, we refer to

∫ t
0
b(s,X)ds and

∫ t
0
σ(s,X)dW (s)

as the drift and diffusion terms, respectively.
We now show the existence and uniqueness of solution to (3.1). For this,

we need the following assumptions.
(H) b ∈ An(lRn), σ ∈ An(lRn×m), and there is a constant L > 0 such that

for all t ∈ [0,∞), x(·), y(·) ∈Wm
t , it holds





|b(t, x(·))− b(t, y(·))| ≤ L|x(·)− y(·)|Wm
t
,

|σ(t, x(·))− σ(t, y(·))| ≤ L|x(·)− y(·)|Wm
t
,

b(·, 0) ∈ L1,loc
F (0,∞), σ(·, 0) ∈ L2,loc

F (0,∞).

(3.5)

Now, we may state the fundamental existence and uniqueness result for
equation (3.1).

Theorem 3.3. Let assumption (H) hold. Then, for any ξ ∈ L`F0
(Ω; lRn) with

some ` ≥ 1, equation (3.1) admits a unique solution X such that for any
T > 0, there is a constant C = C(T, `) so that

E sup
0≤s≤T

|X(s)|` ≤ C(1 + E|ξ|`), (3.6)
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and
E|X(t)−X(s)|` ≤ C(1 + E|ξ|`)|t− s|`/2, ∀ t, s ∈ [0, T ]. (3.7)

Moreover, if ξ̂ ∈ L`F0
(Ω; lRn) is another initial datum and X̃(t) is the corre-

sponding solution of (3.1), then

E sup
0≤s≤T

|X(s)− X̃(s)| ≤ CE|ξ − ξ̂|`. (3.8)

Proof. For any given s > 0, put

Vs =
{
x(·) : [0, s]×Ω 7→ lRn

∣∣∣ x(·) is a {Ft}t≥0-adapted continuous process

with E sup
0≤t≤T

|x(t)|` ≤ ∞
}
.

Clearly, Vs is a Banach space with the following norm:

|x(·)|Vs
4
=
{
E sup

0≤t≤s
|x(t)|`

}1/`

, x(·) ∈ Vs.

Now, for any fixed T > 0 and any T0 ∈ (0, T ). For any x(·) ∈ Vs, we define

F (x(·))(t) = ξ +
∫ t

0

b(u, x)du+
∫ t

0

σ(u, x)dW (u), t ∈ [0, T0]. (3.9)

Then, by (3.5) and Hölder’s inequality, we get

E sup
0≤t≤T0

∣∣∣
∫ t

0

b(s, x)ds
∣∣∣
`

≤ C
[

sup
0≤t≤T0

∣∣∣
∫ t

0

b(s, 0)ds
∣∣∣
`

+ E sup
0≤t≤T0

∣∣∣
∫ t

0

|x(s)|ds
∣∣∣
`
]

≤ C
[(∫ T0

0

|b(s, 0)|ds
)`

+ E
(∫ T0

0

sup
0≤u≤s

|x(u)|ds
)`]

≤ C
[(∫ T0

0

|b(s, 0)|ds
)`

+ T `−1
0

∫ T0

0

E sup
0≤u≤s

|x(u)|`ds
]
.

(3.10)

Similarly, by (3.5) and Burkholder-Davis-Gundy inequality, we have
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E sup
0≤t≤T0

∣∣∣
∫ t

0

σ(s, x)dW (s)
∣∣∣
`

≤ C
[
E sup

0≤t≤T0

∣∣∣
∫ t

0

(
σ(s, x)− σ(s, 0)

)
dW

∣∣∣
`

+ E sup
0≤t≤T0

∣∣∣
∫ t

0

σ(s, 0)dW
∣∣∣
`
]

≤ C
[
E
(∫ T0

0

∣∣σ(s, x)− σ(s, 0)
∣∣2ds

)`/2
+ E

(∫ T0

0

|σ(s, 0)|2ds
)`/2]

≤ C
[
E
(∫ T0

0

sup
0≤u≤s

|x(u)|2ds
)`/2

+
(∫ T0

0

|σ(s, 0)|2ds
)`/2]

≤ C
[
T
`/2−1
0

∫ T0

0

E sup
0≤u≤s

|x(u)|`ds+
(∫ T0

0

|σ(s, 0)|2ds
)`/2]

.

(3.11)
Hence, by combining (3.9)–(3.11), we end up with

E sup
0≤t≤T0

|F (x(·)(t)|`

≤ C
[
T
`/2−1
0

∫ T0

0

|x(·)|`Vsds

+|ξ|` + E
(∫ T0

0

|b(s, 0)|ds
)`

+
(∫ T0

0

|σ(s, 0)|2ds
)`/2]

,

(3.12)

where C = C(T, `) > 0 is a constant, independent of T0, ξ, b(s, 0), σ(s, 0) or
x(·).

Now, by (3.12), it is easy to see that F (x(·)) ∈ VT0 , and

|F (x(·))− F (y(·))|VT0
≤ CT 1/2

0 |x(·)− y(·)|VT0
, ∀ x(·), y(·) ∈ VT0 . (3.13)

We choose T0 ∈ (0, T ) such that CT 1/2
0 < 1. Then it is easy to see that the

map F is from VT0 to itself and contractive. Thus, there is a unique fixed point,
which gives a solution X(·) to (3.1) on [0, T0]. Repeating this procedure, we
get a solution on [0, T ]. Since T is arbitrary, we obtain the solution on [0,∞).

However, by (3.12), it is easy to see that solution X(·) to (3.1) satisfies

|X|`Vt ≤ C
(

1 + E|ξ|` + t`/2−1

∫ t

0

|X|`Vsds
)
, ∀ t ≥ 0.

By this, and using Gronwall’s inequality, we get (3.6).
The proof of the rest assertions follows from a similar argument.

3.2 Martingale representation theorems

In view of (2.5), the Itô integral
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M(t) ∆=
∫ t

0

f(s)dW (s) (3.14)

is a martingale (or local martingale). It is natural to ask if a martingale
(or local martingale) can be represented as an Itô integral of the form (3.14).
Results on such a problem are called martingale representation theorems. They
play very important roles in stochastic calculus itself as well as in stochastic
control theory.

Theorem 3.4. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space satisfying
the usual condition. Assume that {Ft}t≥0 is the natural filtration generated
by an m-dimensional standard Brownian motion W (t). Let X ∈ M2[0, T ]
(resp. M2,loc[0, T ]). Then there exists a unique ϕ(·) ∈ L2

F (0, T ; lRm) (resp.
L2,loc
F (0, T ; lRm)), such that

X(t) =
∫ t

0

〈ϕ(s), dW (s) 〉, ∀t ∈ [0, T ], P -a.s.

We emphasize that Theorem 3.4 works only for the case when {Ft}t≥0

is generated by the (given) Brownian motion. On the other hand, it implies
that if {Ft}t≥0 is generated by a standard Brownian motion, then any square
integrable {Ft}t≥0-martingale must be continuous, i.e.,M2[0, T ] =M2

c [0, T ].

Let us now look at an interesting consequence of Theorem 3.4. Let
(Ω,F , {Ft}t≥0, P ) and W (·) be the same as in the above. Let ξ ∈ L2

FT (Ω).
Then E(ξ | Ft) is an {Ft}t≥0-martingale. Thus, by Theorem 3.4, there exists
a z(·) ∈ L2

F (0, T ; lRm), such that

E(ξ | Ft) = Eξ +
∫ t

0

〈 z(s), dW (s) 〉, t ∈ [0, T ].

In particular,

ξ = Eξ +
∫ T

0

〈 z(s), dW (s) 〉 .

This shows that

L2
FT (Ω) = lR +

{∫ T

0

〈 z(s), dW (s) 〉
∣∣∣ z(·) ∈ L2

F (0, T ; lRm)
}
.

3.3 Backward stochastic differential equations

It is well-known that, for an ordinary differential equations, the terminal value
problem on [0, T ] is equivalent to an initial value problem on [0, T ] under the
time transformation t 7→ T − t. However, things are fundamentally different
for stochastic differential equations. One of the main differences between a
stochastic different equation and the ordinary differential equation is that one
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can not reserve the “time” when we are looking for a solution that is adapted
to the given filtration. Practically, this means that, one only knows about
what has happen in the past, but can not foretell what is going to happen in
the future. Mathematically, this means that we would like to keep the context
within the framework of the Itô type stochastic calculus. As a result, one can
not simply reserve the time to get a solution for a terminal value problem of
stochastic case.

In what follows, the terminal value problem of stochastic differential equa-
tions is said to be backward stochastic differential equation.

Let us analyze how to correctly formulate backward stochastic differential
equation.

Consider the following simplest terminal value problem of stochastic dif-
ferential equation: {

dY (t) = 0, t ∈ [0, T ],
Y (T ) = ξ,

(3.15)

where T > 0 and ξ ∈ L2
FT (Ω). We want to find a {Ft}t≥0 -adapted solution

Y (·) to (3.15). However, this is impossible since the only solution of (3.15) is

Y (·) ≡ ξ, t ∈ [0, T ], (3.16)

which is not necessary {Ft}t≥0 -adapted (unless ξ is F0-measurable). Namely,
equation (3.15) is not well-formulated if one expects to find any {Ft}t≥0-
adapted solution to it.

In what follows, we will see that the modified system of (3.15):
{
dY (t) = Z(t)dW (t), t ∈ [0, T ],
Y (T ) = ξ

(3.17)

is an appropriate reformation of (3.15). Comparing (3.17) with (3.15), we see
that the term Z(t)dW (t) has been added. Process Z(·) is not a priori known
but a part of the solution! As a matter of fact, the presence of the term
Z(t)dW (t) “corrects” the “non-adaptiveness” of the original Y (·) in (3.15).

Generally, we consider the following backward stochastic differential equa-
tion in a fixed duration [0, T ]:

{
dY (t) = h(t, Y (t), Z(t))dt+ Z(t)dW (t), t ∈ [0, T ],
Y (T ) = ξ,

(3.18)

where h : [0, T ]×lRk×lRk×m×Ω → lRk and ξ ∈ L2
Ft(Ω; lRk). The main goal of

this section is to find a pair of {Ft}t≥0 -adapted process Y : [0, T ]×Ω → lRk

and Z : (0, T )×Ω → lRk×m satisfying (3.18).
Put

V 4= L2
F (Ω;C([0, T ]; lRk))× L2

F (0, T ; lRk×m). (3.19)

Clearly, V is a Banach space with the norm
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|(Y (·), Z(·))|V 4=
[
E
(

sup
0≤t≤T

|Y (t)|2 +
∫ T

0

|Z(t)|2dt
)]1/2

. (3.20)

Definition 3.5. A pari of process (Y (·), Z(·)) ∈ V is called an adapted solu-
tion of (3.18) if

Y (t) = ξ −
∫ T

t

h(s, Y (s), Z(s))ds−
∫ T

t

ZdW, ∀ t ∈ [0, T ], a.s. (3.21)

Equation (3.18) is said to have a unique adapted solution if for any two
adapted solutions (Y (·), Z(·)) and (Ỹ (·), Z̃(·)), it must hold

P (Y (t) = Ỹ (t), ∀ t ∈ [0, T ]) = 1, and P (Z(t) = Z̃(t)) = 1, a.e. t ∈ [0, T ].

The main result of this section is the following:

Theorem 3.6. Suppose for any (y, z) ∈ lRk × lRk×m, h(t, y, z) is {Ft}t≥0

-adapted with h(·, 0, 0) ∈ L2
F (0, T ; lRk). Moreover, there is a L > 0 such that

|h(t, y, z)− h(y, ŷ, ẑ)| ≤ L(|y − ŷ|+ |z − ẑ|),
∀ t ∈ [0, T ], y, ŷ ∈ lRk, z, ẑ ∈ lRk×m, a.s.

(3.22)

Then, for any given ξ ∈ L2
FT (Ω; lRk), equation (3.18) admits a unique adapted

solution (Y (·), Z(·)) ∈ V.

Proof. The proof is divided into several steps.

Step 1. First, we show that, for any h(·) ∈ L2
F (0, T ; lRk) and ξ ∈

L2
FT (Ω; lRk), there is an adapted solution (Y (·), Z(·)) ∈ V such that

Y (t) = ξ −
∫ T

t

h(s)ds−
∫ T

t

ZdW, ∀ t ∈ [0, T ], a.s. (3.23)

Indeed, put

M(t) = E(ξ −
∫ T

0

h(s)ds
∣∣ Ft), Y (t) = E(ξ −

∫ T

t

h(s)ds
∣∣ Ft).

Then, M(0) = Y (0). In view of the Martingale Representation Theorem, one
obtains a Z(·) ∈ L2

F (0, T ; lRn) such that

M(t) = M(0) +
∫ t

0

ZdW.

Hence,

ξ −
∫ T

0

h(s)ds = M(T ) = M(0) +
∫ T

0

ZdW = Y (0) +
∫ T

0

ZdW.
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This means

Y (t) = E(ξ −
∫ T

0

h(s)ds+
∫ t

0

h(s)ds
∣∣ Ft) = M(t) +

∫ t

0

h(s)ds

= Y (0) +
∫ t

0

ZdW +
∫ t

0

h(s)ds = ξ −
∫ T

t

h(s)ds−
∫ T

t

ZdW.

Step 2. For any fixed (y(·), z(·)) ∈ V, it is easy to see that

h(·) 4= h(·, y(·), z(·)) ∈ L2
F (0, T ; lRk).

Consider the following backward stochastic differential equation
{
dY (t) = h(t, y(t), z(t))dt+ Z(t)dW (t), t ∈ [0, T ),
Y (T ) = ξ.

(3.24)

By the result in Step 1, equation (3.24) admits a unique adapted solution
(Y (·), Z(·)) ∈ V. This defines a map G : V → V by (y, z) 7→ (Y, Z).

Step 3. Let us show that G admits a unique fixed point, which is the
unique adapted solution of (3.18). For this purpose, we need to introduce an
equivalent norm in V:

|(φ, ψ)|β 4=
[
E
(

sup
0≤t≤T

|eβtY (t)|2 +
∫ T

0

|eβtZ(t)|2dt
)]1/2

,

where β ∈ lR is any given parameter.
It suffices to show that there is a β > 0 such that

|G(y, z)−G(ỹ, z̃)|β ≤ 1
2
|(y, z)− (ỹ, z̃)|β , ∀ (y, z), (ỹ, z̃) ∈ V. (3.25)

To show (3.25), put
{

(Ŷ (·), Ẑ(·)) = G(y, z)−G(ỹ, z̃), ŷ(·) = y(·)− ỹ(·), ẑ(·) = z(·)− z̃(·),
ĥ(·) = h(·, y(·), z(cd))− h(·, ỹ(·), z̃(cd)).

Obviously, (Ŷ (·), Ẑ(·)) satisfies
{
dŶ (t) = ĥ(t)dt+ Ẑ(t)dW (t), t ∈ [0, T ),

Ŷ (T ) = 0.
(3.26)

Applying Itô’s formula to |eβtŶ (t)|2, and noting (3.22) and (3.26), we get
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|eβtŶ (t)|2 +
∫ T

t

|eβsẐ(s)|2ds

= −2
∫ T

t

[β|eβsŶ (s)|2 + 〈 eβsŶ (s), eβsĥ(s) 〉]ds

−2
∫ T

t

e2βs 〈 Ŷ (s), Ẑ(s)dW (s) 〉

≤
∫ T

t

[−2β|Ŷ (s)|2 + 2L|Ŷ (s)|(|ŷ(s)|+ |ẑ(s)|)]e2βsds

−2
∫ T

t

e2βs 〈 Ŷ (s), Ẑ(s)dW (s) 〉

≤
∫ T

t

[
(
− 2β +

2L
λ

)
|Ŷ (s)|2 + λ(|ŷ(s)|2 + |ẑ(s)|2)]e2βsds

−2
∫ T

t

e2βs 〈 Ŷ (s), Ẑ(s)dW (s) 〉, ∀ λ > 0.

(3.27)

Hence, by taking λ = L2β−1, we get

|eβtŶ (t)|2 +
∫ T

t

|eβsẐ(s)|2ds

≤ λ(1 + T )

[
E
(

sup
0≤t≤T

|eβtŷ(t)|2 +
∫ T

0

|eβtẑ(t)|2dt
)]

−2
∫ T

t

e2βs 〈 Ŷ (s), Ẑ(s)dW (s) 〉 .

(3.28)

By taking expectation in both sides of (3.28), one obtains

E

[
|eβtŶ (t)|2 +

∫ T

t

|eβsẐ(s)|2ds
]
≤ λ(1 + T )|(ŷ, ẑ)|2β . (3.29)

On the other hand, by (3.29) and Burkholder-Davis-Gundy inequality, we
get
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E

(
sup

0≤t≤T

∣∣∣∣∣
∫ T

t

e2βs 〈 Ŷ (s), Ẑ(s)dW (s) 〉
∣∣∣∣∣

)

≤ 2E
(

sup
0≤t≤T

∣∣∣∣
∫ t

0

e2βs 〈 Ŷ (s), Ẑ(s)dW (s) 〉
∣∣∣∣
)

≤ CE
(∫ T

0

e4βs|Ŷ (s)|2|Z(s)|2ds
)1/2

≤ CE


(

sup
0≤t≤T

|eβsŶ (s)|2
)1/2

(∫ T

0

|eβsẐ(s)|2ds
)1/2




≤ 1
4
E

(
sup

0≤t≤T
|eβtŶ (t)|2

)
+ Cλ|(ŷ, ẑ)|2β .

(3.30)

Combining (3.28) and (3.30), we arrive at

E

(
sup

0≤t≤T
|eβtŶ (t)|2

)

≤ λ(T + 1)|(ŷ, ẑ)|2β + E

(
sup

0≤t≤T

∣∣∣∣∣
∫ T

t

e2βs 〈 Ŷ (s), Ẑ(s)dW (s) 〉
∣∣∣∣∣

)

≤ 1
2
E

(
sup

0≤t≤T
|eβtŶ (t)|2

)
+ Cλ|(ŷ, ẑ)|2β .

(3.31)

Finally, it follows from (3.29) and (3.31) that (Recall that λ = L2/β)

|(Ŷ , Ẑ)|2β ≤
C

β
|(ŷ, ẑ)|2β , (3.32)

where C > 0 is a constant, independent of β. By taking β > 0 large enough,
we get the desired contractivity of the map G from V into itself.
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Stochastic Evolution Equations

4.1 Some preliminaries

Let and H be a separable Hilbert space. For any a, b ∈ H, we denote by a⊗ b
the linear operator defined by (a ⊗ b)h = a(b, h)H , h ∈ H. Assume {hk} to
be a complete orthonormal basis in H. For any S ∈ L(H), we define the trace
of S as

TrS
4
=
∞∑

k=1

(Shk, hk)H .

It can be shown that this number is independent of the choice of the complete
orthonormal basis.

Let (Ω,F , P ) be a probability space. Let X : (Ω,F) → (H,B(H)) be
a H-valued random variable. The random variable X is said to be Bochner
integrable (or simply integrable) if

∫

Ω

|X(ω)|HdP <∞.

As before, in this case we say that X has a mean, and denoted by

EX =
∫

Ω

XdP.

We also call EX the (mathematical) expectation of X.

One can define Banach spaces LpF (Ω;H)
4
= Lp(Ω,F , P ;H) for each p ≥ 1.

In particular, L2
F (Ω;H) is a Hilbert space.

If X,Y ∈ L2
F (Ω;H), we define the covariance operator of X and Y by

Cov (X,Y ) = E
(
(X − EX)⊗ (Y − EY )

)
.

In particular, VarX
4
= Cov (X,X) is called the variance operator of X. It is

easy to see that
Tr VarX = E|X − EX|2.
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Proposition 4.1. Assume that X is a Bochner integrable H-valued random
variable defined on (Ω,F , P ) and let J be a sub-σ-field of F . Then there is a
unique integrable H-valued random variable Z, measurable with respect to J
such that ∫

A

ZdP =
∫

A

XdP, ∀ A ∈ J .

Z will be denoted by E(X | J ) and called the conditional expectation of X
given J . Moreover

|E(X | J )|H ≤ E(|X|H | J ).

One can defined the general H-valued stochastic process {X(t)}t∈I , and
recall the definition of L2

F (0, T ;H), etc.
If E|X(t)|H <∞ for each t ∈ I, then this process is called integrable. An

integrable and adapted H-valued process X is said to be a martingale if

E(X(t) | Fs) = X(s), a.s.

for arbitrary t, s ∈ I with t ≥ s.
Proposition 4.2. Let {X(t)}t∈I be a martingale. Then the following state-
ments hold.

i) {|X(t)|H}t∈I is a submartingale.
ii) For any increasing convex function g from lR+ to itself, if E(g(|X(t)|H))

<∞ for each t ∈ I, then g(|X(t)|H) is a submartingale.

Fix any T > 0 and we denote by M2
T (H) the space of all H-valued con-

tinuous, square integrable martingales. We need the following result.

Proposition 4.3. The space M2
T (H) equipped with the norm

|M(·)|M2
T

(H) =
√
E|M(T )|2, ∀M(·) ∈M2

T (H),

is a Hilbert space.

Now, let U be another separable Hilbert space, with complete orthonormal
basis {uk}. A linear bounded operator G : U → H is said to be Hilbert-
Schmidt if

|G|2 4=
∞∑

k=1

|Guk|2 <∞. (4.1)

It can be shown that this number is independent of the choice of {uk}. More-
over, the set L2(U ;H) of all Hilbert-Schmidt operators from U to H, equipped
with the norm (4.1), is a separate Hilbert space.
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4.2 Hilbert space valued Brownian Motions and
stochastic integrals

We consider two separable Hilbert spaces H and U , and a symmetric nonneg-
ative operator Q ∈ L(U). We consider first the case when TrQ < ∞ (which
implies Q is compact). Then there is a complete orthonormal basis {uk} in
U , and a bounded sequence of nonnegative real numbers λk such that

Quk = λkuk, k = 1, 2, · · · .
Definition 4.4. A U -valued continuous stochastic process {W (t)}t≥0 is called
a Q-Brownian Motion if

i) W (0) = 0;
ii) for each 0 ≤ s < t <∞, W (t)−W (s) is independent of Fs, and

W (t)−W (s) ∼ N (0, (t− s)Q).

Proposition 4.5. Assume that W is a Q-Brownian Motion, with TrQ <∞.
Then for any t, W has the expansion

W (t) =
∞∑

j=1

√
λjβj(t)uj , (4.2)

where
βj =

1√
λj

(W (t), uk)U , j = 1, 2, · · · , (4.3)

are mutually independent real valued Brownian Motions, and the series in
(4.2) is convergent in L2

F (Ω;U). Moreover, this series is convergent inM2
T (U)

for each T > 0.

Proof. For any t > s > 0, by (4.3) one has

E(βi(t)βj(s)) = 1√
λiλj

E
(
(W (t), ui)U (W (s), uj)U

)

= 1√
λiλj

[
E
(
(W (t)−W (s), ui)U (W (s), uj)U

)
+ E

(
(W (s), ui)U (W (s), uj)U

)]

= 1√
λiλj

s(Qui, uj)U =
√

λi
λj
sδij .

Hence the independence of βi, i ∈ lN, follows. To show (4.2) it is enough to
notice that, for m ≥ n ≥ 1,

E
∣∣∣
n∑

j=n

√
λjβj(t)uj

∣∣∣
2

U
= t

m∑

j=n

λj ,

and recall that
∞∑

j=1

λj <∞. Note that this also implies the last assertion.
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It is useful to introduce a subspace U0 = R(Q1/2) of U , which is a Hilbert

space with the norm | · |0 4= |Q−1/2 · |U , or more explicitly

|u|20 =
∞∑

k=1

1
λk

(u, uk)2
U .

Denote by L0
2 ≡ L2(U0;H) the space of all Hilbert-Schmidt operators from

U0 into H. L0
2 is a separate Hilbert space, equipped with the norm

|Ψ |2L0
2
≡ Tr (ΨQΨ∗).

Let T > 0 and recall that L2
F (0, T ;L0

2) is the Hilbert space consisting in
all measurable L0

2-valued processes Φ(t) adapted to {Ft}t≥0, such that

|Φ|2L2
F (0,T ;L0

2)

∆=E

∫ T

0

|Φ(t)|2L0
2
dt <∞.

For each N ∈ lN, we define

WN (t) =
N∑

j=1

√
λjβj(t)uj . (4.4)

Now, for any Φ ∈ L2
F (0, T ;L0

2), we define

∫ t

0

Φ(s)dWN (s) =
N∑

j=1

√
λj

∫ t

0

Φ(s)ujdβj(t)

=
∞∑

k=1

N∑

j=1

√
λjhk

∫ t

0

(Φ(s)uj , hk)Hdβj(t), in M2
T (H).

(4.5)

It can be shown that {∫ t
0
Φ(s)dWN (s)}∞N=1 is a Cauchy sequence in M2

T (H).
Hence, we may define the integral of Φ with respect to dW (t) as follows:

∫ t

0

Φ(s)dW (s) = lim
N→∞

∫ t

0

Φ(s)dWN (s), in M2
T (H). (4.6)

Similar to the scalar case, one can define the stochastic integral of Φ ∈
L2,loc
F (0, T ;L0

2) with respect to dW (t).

4.3 Stochastic integrals for cylindrical Brownian Motions

We now extend the definition of the stochastic integral to the case of general
bounded, self-adjoint and nonnegative operators Q on U . For simplicity, we
assume that Qx 6= 0 for x 6= 0. Let U0 = R(Q1/2) with the norm | · |0 4=
|Q−1/2 · |U , and let U1 be any fixed Hilbert space such that U is embedded
continuously into U1 and the embedding of U0 into U1 is Hilbert-Schmidt.
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Proposition 4.6. Let {gj} be a complete orthonormal basis in U0 and {βj}
be a family of independent real valued standard Brownian Motion. Then

W (t) =
∞∑

j=1

βj(t)gj , t ≥ 0, (4.7)

defines a Q1-Brownian Motion on U1 with TrQ1 <∞. Moreover, R(Q1/2
1 ) =

U0 and
|u|0 = |Q−1/2

1 u|U1 . (4.8)

Proof. Since the embedding J : U0 → U1 is Hilbert-Schmidt, one has

∞∑

j=1

|gj |2U1
=
∞∑

j=1

|Jgj |2U1
<∞.

Hence, the first assertion follows from

E
(∣∣∣

m∑

j=n

gjβj(t)
∣∣∣
2

U1

)
=

m∑

j=n

|gj |2U1
.

We will call the process W (t) a cylindrical Brownian Motion. It is not
uniquely determined but the class of integrands L2

F (0, T ;L0
2) and L2,loc

F (0, T ;L0
2)

are independent of the space U1.
Now, the method of last section, we can define the desired stochastic in-

tegrals.

4.4 Properties of the stochastic integral

Theorem 4.7. Assume that Φ ∈ L2
F (0, T ;L0

2), then the stochastic
∫ t

0
ΦdW ∈

M2
T (H), and
i) | ∫ ·

0
ΦdW |M2

T
(H) = |Φ(·)|L2

F (0,T ;L0
2);

ii) for any Φ1, Φ2 ∈ L2
F (0, T ;L0

2) and t, s ∈ [0, T ],

E(
∫ t

0

Φ1dW,

∫ s

0

Φ2dW )H = E

∫ t∧s

0

Tr [(Φ2(r)Q1/2)(Φ1(r)Q1/2)∗]dr.

Now, assume Φ ∈ L2,loc
F (0, T ;L0

2), φ ∈ L1,loc
F (0, T ;L0

2) and X(0) is a F0-
measurable H-valued random variable. Then the following process

X(t) = X(0) +
∫ t

0

φ(s)ds+
∫ t

0

Φ(s)dW (s), t ∈ [0, T ],

is well-defined. Assume a function F : [0, T ]×H → lR and its partial deriva-
tives Ft, Fx and Fxx are uniformly continuous on bounded subsets of [0, T ]×H.
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Theorem 4.8. Under the above conditions, P -a.s., for all t ∈ [0, T ],

F (t,X(t)) = F (0, X(0)) +
∫ t

0

〈Fx(s,X(s)), Φ(s)dW (s) 〉

+
∫ t

0

{
Ft(s,X(s)) + 〈Fx(s,X(s)), φ(s) 〉

+
1
2

Tr [Fxx(s,X(s))(Φ(s)Q1/2)(Φ(s)Q1/2)∗]
}
ds.

4.5 The stochastic Fubini theorem

The following stochastic version of the Fubini theorem will be frequently used.

Theorem 4.9. Let (G,G, µ) be a measure space and Φ : (Ω× (0, T )×G,F ×
B(0, T )× G)→ (L0

2,B(L0
2)) be a measurable mapping. If

∫

G

|Φ(·, ·, x)|L2
F (0,T ;L0

2)µ(dx) <∞,

then P − a.s.,

∫

G

[ ∫ T

0

Φ(t, x)dW (t)
]
µ(dx) =

∫ T

0

[ ∫

G

Φ(t, x)µ(dx)
]
dW (t).

4.6 Forward stochastic evolution equations

Let H and U be two separable Hilbert spaces and Q a self-adjoint nonnegative
operator on U . Let {W (t)}t≥0 be a Q-Brownian Motion on U1 ⊃ U and
U0 = R(Q1/2).

In this section, we shall consider the following forward stochastic evolution
equation:

{
dX(t) = [AX(t) + f(t)]dt+BX(t)dW (t), t ∈ (0, T ],
X(0) = ξ,

(4.9)

where A : D(A) ⊂ H → H is the generator of a C0-semigroup S(·), ξ is a F0-
measurable H-valued random variable, f ∈ L1,loc

F (0, T ;H) and B : D(B) ⊂
H → L0

2 = L2(U0;H) is a linear operator.
Let {gj} be a complete orthonormal basis in U0. Since for any x ∈ D(B),

B(x) ∈ L2(U0;H), we deduce that

∞∑

j=1

|B(x)gj |2 <∞.
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The operators
Bjx = B(x)gj , j = 1, 2, · · · .

are linear and

B(x)u =
∞∑

j=1

Bjx(u, gj)U0 , x ∈ D(B), u ∈ U0. (4.10)

Consequently, if

W (t) =
∞∑

j=1

βj(t)gj ,

then equation (4.9) can be equivalently written as



dX(t) = [AX(t) + f(t)]dt+

∞∑

j=1

BjX(t)dβj(t), t ∈ (0, T ],

X(0) = ξ.

(4.11)

We define a strong solution of (4.9) as a H-valued adapted process X(t),
which takes values in D(A) ∩D(B), P − a.s., such that

P
(∫ T

0

[|X(t)|H + |AX(t)|H ]dt <∞
)

= 1, P
(∫ T

0

|BX(t)|2L0
2
ds <∞

)
= 1,

and, for any t ∈ [0, T ], and P − a.s.,

X(t) = ξ +
∫ t

0

[AX(s) + f(s)]ds+
∫ t

0

BX(s)dW (s). (4.12)

A H-valued adapted process {X(t)}t∈[0,T ] is said to be a weak solution to
(4.9) if it takes values in D(B), P − a.s.,

P
(∫ T

0

|X(s)|Hds <∞
)

= 1, P
(∫ T

0

|BX(t)|2L0
2
ds <∞

)
= 1, (4.13)

and, for any t ∈ [0, T ] and ζ ∈ D(A∗),

(X(t), ζ)H = (ξ, ζ)H +
∫ t

0

[(X(s), A∗ζ)H + (f(s), ζ)H ]ds

+
∫ t

0

(BX(s)dW (s), ζ)H , P − a.s.
(4.14)

Finally, A H-valued adapted process {X(t)}t∈[0,T ] is said to be a mild
solution to (4.9) if it takes values in D(B), (4.13) holds P − a.s., and for any
t ∈ [0, T ],

X(t) = S(t)ξ +
∫ t

0

S(t− s)f(s)ds+
∫ t

0

S(t− s)BX(s)dW (s). (4.15)

The relationship of the above defined solutions are stated as follows.
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Theorem 4.10. Assume that A : D(A) ⊂ H → H is the generator of a
C0-semigroup S(·) in H. Then a strong solution of (4.9) is always its weak
solution, and a weak solution of (4.9) is its mild solution. Conversely, if X
is a mild solution of (4.9) and BX(·) ∈ L2

F (0, T ;L0
2), then X is also its weak

solution.

In order to establish the well-posedness of (4.9), we need to analyze the
stochastic convolution:

WΦ
A (t) =

∫ t

0

S(t− s)Φ(s)dW (s), t ∈ [0, T ], Φ ∈ L2
F (0, T ;L0

2). (4.16)

Theorem 4.11. Assume A generates a C0-semigroup in H and Φ ∈ L2
F (0, T ;L0

2).
Then the process WΦ

A (t) has a continuous and {Ft}-adapted modification and
there is a constant C = C(T ) > 0 such that

E
(

sup
s∈[0,t]

|WΦ
A (t)|2

)
≤ C|Φ|2L2

F (0,T ;L0
2), t ∈ [0, T ]. (4.17)

In what follows, we will assume B to be bounded.

Theorem 4.12. Assume A generates a C0-semigroup in H, B ∈ L(H,L0
2)

and ξ ∈ L2
F0

(Ω;H). Then equation (4.9) admits a unique mild solution X ∈
L2
F (Ω;C([0, T ];H)), identicial with a weak solution.

Example 4.13. (Stochastic wave equation) Let D be a bounded domain of lRn

with C2 boundary Γ . Consider the wave equation with Dirichlet boundary
conditions:





dyt = ∆ydt+ a · ∇ydβ(t), (t, x, ω) ∈ (0, T )×D ×Ω,
y = 0, (t, x, ω) ∈ (0, T )× Γ ×Ω,
y(0) = y0, yt(0) = y1, x ∈ D,

(4.18)

where a ∈ C1(D) and β(·) is a 1-d standard Brownian Motion.
Now, for any (y0, y1) ∈ H1

0 (D) × L2(D), by Theorem 4.11, system (4.18)
admits a unique solution (y, yt) ∈ L2

F (Ω;C([0, T ];H1
0 (D)× L2(D))).

4.7 Backward stochastic evolution equations

We now consider following backward stochastic evolution equations:



dX(t) =

(
AX(t) +

m∑

i=1

Ciφ
i
)
dt+

m∑

i=1

φi(t)dβi(t),

X(T ) = ξ,

(4.19)
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where β = (β1, · · · , βm) are standard Brownian motions defined on (Ω,F ,Ft, P ),
the filtration {Ft} is generated by β, and A, C1, · · · , Cm are linear operators
defined on a Hilbert space H.

One can define the strong solution, weak solution and mild solution to
(4.19).

We have the following result.

Theorem 4.14. Assume A generates a C0-semigroup in H, Ci ∈ L(H) for
i = 1, 2, · · · ,m and ξ ∈ L2

FT (Ω;H). Then equation (4.19) admits a unique
mild solution (X,φ1, · · · , φm) ∈ L2

F (Ω;C([0, T ];H)) × (L2
F (0, T ;H))m, iden-

tical with a weak solution.
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